Soft computing-based modelling and optimization of NOx emission from a variable compression ratio diesel engine

Authors

  • Prabhu Paramasivam Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India
  • Khatir Naima Institute of Technology, University centre of Naama, Naama, Algeria
  • Marek Dzida Institute of Naval Architecture, Gdansk University of Technology, Gdansk, Poland.

DOI:

https://doi.org/10.61435/jese.2024.e21

Abstract

Machine learning method and statistical method used for model prediction and optimization of third generation biodiesel-diesel blend powered variable compression engine High R2 values of 0.9998 and 0.9994 were observed in the training and testing phase of the model, respectively, indicating that The results confirm the robustness of the forecasting system. It was shown that the model accuracy means squared errors remained low at 0.0002 and 0.0014. These results were then confirmed by desirability-based optimization, which succeeded in achieving the values of the set parameters It should be noted that the compression ratio (CR), fuel injection pressure, and engine load were optimized to meet the defined parameters, resulting in a NOx emissions reduction as 222.8 ppm. The research illustrates the efficacy of desirability-based optimization in attaining targeted performance targets across important engine parameters whilst also reducing the impact on the environment.

Keywords:

Machine learning, Alterative fuel, XGBoost, Desirability, Response surface methodology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Amjad, M., Ahmad, I., Ahmad, M., Wróblewski, P., Kamiński, P., & Amjad, U. (2022). Prediction of Pile Bearing Capacity Using XGBoost Algorithm: Modeling and Performance Evaluation. Applied Sciences, 12(4), 2126. https://doi.org/10.3390/app12042126

Arias, D. M., Ortíz-Sánchez, E., Okoye, P. U., Rodríguez-Rangel, H., Balbuena Ortega, A., Longoria, A., Domínguez-Espíndola, R., & Sebastian, P. J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Science of The Total Environment, 794, 148636. https://doi.org/10.1016/j.scitotenv.2021.148636

Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Dimitriou, P., Peng, Z., Lemon, D., Gao, B., & Soumelidis, M. (2013, September 8). Diesel Engine Combustion Optimization for Bio-Diesel Blends Using Taguchi and ANOVA Statistical Methods. https://doi.org/10.4271/2013-24-0011

Harrington, E. C. (1965). The Desirability Function. Industrial Quality Control, 21, 494–498.

Jain, A., Bora, B. J., Kumar, R., Sharma, P., Deepanraj, B., Irshad, K., & Ravikiran, C. (2023). Application of hybrid Taguchi L16 and desirability for model prediction and optimization in assessment of the performance of a novel Water Hyacinth biodiesel run diesel engine. Fuel, 339, 127377. https://doi.org/10.1016/j.fuel.2022.127377

Khan, M. M., Kadian, A. K., & Sharma, R. P. (2022). Attempt to mitigate marine engine emissions with improved performance by the investigation of alcohol inclusion in sunflower biodiesel-sunflower oil-diesel blend. Environmental Science and Pollution Research, 30(12), 33974–33991. https://doi.org/10.1007/s11356-022-24147-6

Kumar, A. N., Ashok, B., Nanthagopal, K., Ong, H. C., Geca, M. J., Victor, J., Vignesh, R., Jeevanantham, A. K., Kannan, C., & Kishore, P. S. (2022). Experimental analysis of higher alcohol–based ternary biodiesel blends in CI engine parameters through multivariate and desirability approaches. Biomass Conversion and Biorefinery, 12(5), 1525–1540. https://doi.org/10.1007/s13399-020-01134-w

Lei, X., Shuang, J., Yang, P., & Liu, Y. (2019). Parametric study and optimization of dimpled tubes based on Response Surface Methodology and desirability approach. International Journal of Heat and Mass Transfer, 142, 118453. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118453

Mayer, F. D., Brondani, M., Vasquez Carrillo, M. C., Hoffmann, R., & Silva Lora, E. E. (2020). Revisiting energy efficiency, renewability, and sustainability indicators in biofuels life cycle: Analysis and standardization proposal. Journal of Cleaner Production, 252, 119850. https://doi.org/10.1016/j.jclepro.2019.119850

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003

Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A., & Mohan, A. (2017). Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management, 146, 8–19. https://doi.org/10.1016/j.enconman.2017.05.021

Nazarpour, M., Taghizadeh-Alisaraei, A., Asghari, A., Abbaszadeh-Mayvan, A., & Tatari, A. (2022). Optimization of biohydrogen production from microalgae by response surface methodology (RSM). Energy, 253, 124059. https://doi.org/10.1016/j.energy.2022.124059

Pan, S., Zheng, Z., Guo, Z., & Luo, H. (2022). An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. Journal of Petroleum Science and Engineering, 208, 109520. https://doi.org/10.1016/j.petrol.2021.109520

Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass and Bioenergy, 151, 106166. https://doi.org/10.1016/j.biombioe.2021.106166

Pullagura, G., Vanthala, V. S. P., Vadapalli, S., Bikkavolu, J. R., Barik, D., Sharma, P., & Bora, B. J. (2024). Enhancing performance characteristics of biodiesel-alcohol/diesel blends with hydrogen and graphene nanoplatelets in a diesel engine. International Journal of Hydrogen Energy, 50, 1020–1034. https://doi.org/10.1016/j.ijhydene.2023.09.313

Qiu, Y., Zhou, J., Khandelwal, M., Yang, H., Yang, P., & Li, C. (2022). Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Engineering with Computers, 38(S5), 4145–4162. https://doi.org/10.1007/s00366-021-01393-9

Ramalingam, K., Vellaiyan, S., Venkatesan, E. P., Khan, S. A., Mahmoud, Z., & Saleel, C. A. (2023). Challenges and Opportunities of Low Viscous Biofuel─A Prospective Review. ACS Omega, 8(19), 16545–16560. https://doi.org/10.1021/acsomega.3c00387

Ramalingam, S., Rajendran, S., Ganesan, P., & Govindasamy, M. (2018). Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review. Renewable and Sustainable Energy Reviews, 81, 775–788. https://doi.org/10.1016/j.rser.2017.08.026

Said, Z., Sharma, P., Bora, B. J., Nguyen, V. N., Bui, T. A. E., Nguyen, D. T., Dinh, X. T., & Nguyen, X. P. (2023). Modeling-optimization of performance and emission characteristics of dual-fuel engine powered with pilot diesel and agricultural-food waste-derived biogas. International Journal of Hydrogen Energy, 48(18), 6761–6777. https://doi.org/10.1016/j.ijhydene.2022.07.150

Sharma, A., Ansari, N. A., Pal, A., Singh, Y., & Lalhriatpuia, S. (2019). Effect of biogas on the performance and emissions of diesel engine fuelled with biodiesel-ethanol blends through response surface methodology approach. Renewable Energy, 141, 657–668. https://doi.org/10.1016/j.renene.2019.04.031

Sharma, P., & Sahoo, B. B. (2022). An ANFIS-RSM based modeling and multi-objective optimization of syngas powered dual-fuel engine. International Journal of Hydrogen Energy, 47(44), 19298–19318. https://doi.org/10.1016/j.ijhydene.2022.04.093

Sharma, P., & Sharma, A. K. (2021). AI-Based Prognostic Modeling and Performance Optimization of CI Engine Using Biodiesel-Diesel Blends. International Journal of Renewable Energy Research, v11i2. https://doi.org/10.20508/ijrer.v11i2.11854.g8191

Sharma, P., & Sharma, A. K. (2022). Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine. Journal of Energy Resources Technology, 144(3). https://doi.org/10.1115/1.4051340

Silitonga, A. S., Masjuki, H. H., Ong, H. C., Sebayang, A. H., Dharma, S., Kusumo, F., Siswantoro, J., Milano, J., Daud, K., Mahlia, T. M. I., Chen, W.-H., & Sugiyanto, B. (2018). Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy, 159, 1075–1087. https://doi.org/10.1016/j.energy.2018.06.202

Solmaz, H., Calam, A., Yılmaz, E., Şahin, F., Ardebili, S. M. S., & Aksoy, F. (2023). Evaluation of MWCNT as fuel additive to diesel–biodiesel blend in a direct injection diesel engine. Biofuels, 14(2), 147–156. https://doi.org/10.1080/17597269.2022.2122154

Srinidhi, C., Madhusudhan, A., Channapattana, S. V., Gawali, S. V., & Aithal, K. (2021). RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester. Energy, 234, 121282. https://doi.org/10.1016/j.energy.2021.121282

Sunil Kumar, K., Surakasi, R., Patro, S. G. K., Govil, N., Ramis, M. K., Razak, A., Sharma, P., Alsubih, M., Islam, S., Khan, T. M. Y., Almakayeel, N., & Chintakindi, S. (2024). Performance, Combustion, and Emission analysis of diesel engine fuelled with pyrolysis oil blends and n-propyl alcohol-RSM optimization and ML modelling. Journal of Cleaner Production, 434, 140354. https://doi.org/10.1016/j.jclepro.2023.140354

Thodda, G., Madhavan, V. R., & Thangavelu, L. (2023). Predictive Modelling and Optimization of Performance and Emissions of Acetylene Fuelled CI Engine Using ANN and RSM. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3544–3562. https://doi.org/10.1080/15567036.2020.1829191

Uyumaz, A., Aydoğan, B., Yılmaz, E., Solmaz, H., Aksoy, F., Mutlu, İ., İpci, D., & Calam, A. (2020). Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel, 280, 118588. https://doi.org/10.1016/j.fuel.2020.118588

Wang, S., Liu, S., Zhang, J., Che, X., Yuan, Y., Wang, Z., & Kong, D. (2020). A new method of diesel fuel brands identification: SMOTE oversampling combined with XGBoost ensemble learning. Fuel, 282, 118848. https://doi.org/10.1016/j.fuel.2020.118848

Yang, Y., Gao, L., Abbas, M., Elkamchouchi, D. H., Alkhalifah, T., Alturise, F., & Ponnore, J. J. (2023). Innovative composite machine learning approach for biodiesel production in public vehicles. Advances in Engineering Software, 184, 103501. https://doi.org/10.1016/j.advengsoft.2023.103501

Zhang, M., Chen, W., Yin, J., & Feng, T. (2022). Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost. Energies, 15(16), 5981. https://doi.org/10.3390/en15165981

Zhang, P., Jia, Y., & Shang, Y. (2022). Research and application of XGBoost in imbalanced data. International Journal of Distributed Sensor Networks, 18(6), 155013292211069. https://doi.org/10.1177/15501329221106935

Zhang, X., Li, H., Sekar, M., Elgendi, M., Krishnamoorthy, N. R., Xia, C., & Priya Matharasi, D. (2023). Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks. Fuel, 333, 126292. https://doi.org/10.1016/j.fuel.2022.126292

Downloads

Published

2024-04-22

How to Cite

Paramasivam, P., Naima, K., & Dzida, M. (2024). Soft computing-based modelling and optimization of NOx emission from a variable compression ratio diesel engine . Journal of Emerging Science and Engineering, 2(2), e21. https://doi.org/10.61435/jese.2024.e21

Issue

Section

Articles