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Abstract. Machine learning method and statistical method used for model prediction and optimization of third generation biodiesel-diesel blend 
powered variable compression engine High R2 values of 0.9998 and 0.9994 were observed in the training and testing phase of the model, respectively, 
indicating that The results confirm the robustness of the forecasting system. It was shown that the model accuracy means squared errors remained 
low at 0.0002 and 0.0014. These results were then confirmed by desirability-based optimization, which succeeded in achieving the values of the set 
parameters It should be noted that the compression ratio (CR), fuel injection pressure, and engine load were optimized to meet the defined parameters, 
resulting in a NOx emissions reduction as 222.8 ppm. The research illustrates the efficacy of desirability-based optimization in attaining targeted 
performance targets across important engine parameters whilst also reducing the impact on the environment.  
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1. Introduction  

A concerning situation has arisen all across the world as a consequence of the fast depletion of conventional fuels and the 
subsequent damage to the environment that has resulted from this decline. It has virtually become a requirement to find a substitute 
fuel in order to bridge the gap between the demand for energy and energy availability (K. Ramalingam et al., 2023). Sustainable 
development goal 7 categorically needs all-out efforts towards achieving a better effort towards mankind with economical and 
universal availability of energy at its core. The problem becomes more severe in the case of fossil fuel-powered compression ignition 
engines like diesel engines. The emission from these engines is being held responsible for global warming caused by greenhouse 
gases emitted by them. Herein, alternative fuels like biodiesel are attractive options (Mayer et al., 2020; S. Ramalingam et al., 2018).    

The alternative fuel needs to have the capability of lowering the overall emissions that are brought up by the extensive utilization 
of liquid fuels that are derived from petroleum. Biodiesel, which is produced from sustainable biomass-based feedstocks such as 
vegetable oils and animal fats, is gaining popularity because it is kind to the environment and has fuel properties that are equivalent 
to those of fossil-based diesel (Arias et al., 2021; Naik et al., 2010; Pullagura et al., 2024).  

Animal fats, edible oils, non-edible oils, and microalgal oils may all be converted into biodiesel by the process of 
transesterification. However, because edible oils are consumed by humans, they are not regarded to be a potential feedstock for the 
production of biodiesel in India. Because local production is not adequate to meet the need for edible oil, more than 80 percent of its 
requirements are still imported from other countries of the world. In recent years, there has been a shift in focus towards non-edible 
oils, which continue to struggle with low productivity and sluggish growth rates, making them an impractical choice for the 
manufacture of biodiesel (Khan et al., 2022; A. Sharma et al., 2019; P. Sharma & Sharma, 2022).  

When it comes to diesel engines, biodiesel has been employed in a great number of studies that have been published in the 
academic literature to explore engine performance, combustion features, and contaminants. Uyumaz et al. (Uyumaz et al., 2020) 
researched to investigate the impact that opium poppy-derived methyl ester has on combustion, engine performance, emissions of 
nitrogen oxides, carbon monoxide, and soot at varying engine loads and speeds. As a result of their higher viscosity and density, 
biodiesel blends were found to have decreased in-cylinder exhaust temperature, increased in-cylinder pressure, and decreased in-
cylinder exhaust pressure. It is important to note that opium poppy oil biodiesel significantly reduces emissions of carbon monoxide 
and soot, while marginally increasing emissions of nitrogen oxides. Solmaz et al. (Solmaz et al., 2023) employed Response Surface 
Methodology (RSM) in order to enhance the features of diesel engines by using diesel, biodiesel, and multi wall carbon nanotubes 
(MWCNT) mixes. The purpose of this study was to explore the potential effects of MWCNT concentration and engine load on 
performance as well as exhaust pollutants. As the findings showed, increasing the load on the engine resulted in a rise in NOx 
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emissions; however, an increase in the concentration of MWCNT results in a decrease in these emissions. The employment of 
MWCNTs results in a slight increase in BTE while simultaneously reducing BSFC.  

Nanthagopal et al. (Nanthagopal et al., 2017) in an investigation of a twin-cylinder diesel engine, the impact of adding 
nanoparticles of zinc oxide and titanium dioxide to biodiesel made from Calophyllum inophyllum was investigated. Through the use 
of an ultrasonication method, the nanofluids were created by combining distilled water with amounts of titanium dioxide and zinc 
oxide that were 50 and 100 parts per million, respectively. Using a mechanical stirrer, four distinct Calophyllum inophyllum 
nanoemulsions were created. The proportions of these nano emulsions were as follows: 93% of Calophyllum inophyllum biodiesel, 
5% of nanofluids of zinc oxide and titanium dioxide, and 2% of span 80. The emission of nitrogen oxides was lower for all CIME nano 
emulsions than it was for pure Calophyllum inophyllum biodiesel, although it was somewhat higher than the emission of standard 
diesel fuel. The smoke emission of diesel engines was significantly decreased for all CIME nanoemulsions when compared to pure 
diesel and biodiesel fuels during all engine loads. This was the case regardless of the volume of the engine.  

The literature reveals that the evaluation of a novel fuel as a substitute for fossil fuels may involve a large number of experiments, 
taking into consideration all of the features of the engine. The situation that results from taking into account both resources and time 
is inefficient. An increase in the effectiveness of the process of developing fuel maps has been achieved via the use of several software 
applications. Numerous simulations were carried out with an exceptional level of accuracy using a number of these computer 
programs, which resulted in a reduction in the total number of tests. One of these applications is called RSM which can help determine 
the ideal quantities of each factor and indicate which of the input variables that have been given are the most effective (P. Sharma & 
Sahoo, 2022; Sunil Kumar et al., 2024). Besides this machine learning (ML) is an attractive approach that is often employed to assess 
the impact of every input variable upon the output variable. It makes use of data to understand underlying patterns in data to establish 
correlation among data. By using a hybrid strategy, it is possible to enhance the effectiveness of the process by concurrently 
employing ML model-based prediction and RSM to determine the best combination of any number of input variables (Silitonga et al., 
2018; Yang et al., 2023; X. Zhang et al., 2023). 

Extreme Gradient Boosting (XGBoost), a sophisticated machine learning approach, was used in combination with Response 
Surface Methodology (RSM) in the present study in order to predict and optimize the amount of nitrogen oxides (NOx) emissions 
produced by a biodiesel-diesel powered engine. Researchers endeavor to improve the accuracy of emission forecasts and determine 
the ideal operating conditions. It is planned to combine the capabilities of RSM, which include optimization, with the capacity of 
XGBoost to handle complicated connections in data. This technique not only provides insights into the reduction of harmful 
emissions, but also demonstrates the synergy that exists between ML and statistical optimization approaches in the context of 
addressing environmental concerns within the realm of renewable energy. 

2. Materials and methods  

2.1 Test fuel and set up  

In the present study, Chlorella protothecoides microalgal oil was employed for the production of biodiesel through the process 
of transesterification. A filter was employed for microalgal oil to eliminate the insoluble contaminants and then heated for 10 minutes 
maintaining the 100 °C temperature to reduce moisture from oil. A mechanical stirrer using the appropriate amounts of CH3OH and 
KOH. The stated settings, which comprised a molar ratio of methanol vs oil as 7.12 (vol/vol), for 115 minutes, a reaction temperature 
of 64 °Celsius, and a concentration of catalyst as 1.019 (% wt/vol).  

To complete the reaction, the mixture was heated for a predetermined amount of time at the specified temperature. Biodiesel 
generated using the aforementioned approach is utilized to power a computer-linked single-cylinder, 4-stroke, diesel engine (shown 
in Fig. 1). Table 1 shows the exact specs for the test rig. An eddy current dynamometer was employed for engine loading and 
variation. The load sensors, mounted on a dynamometer, were used to transmit load indications to the crankshaft. Two piezometer 
sensors were used to quantify the combustion and fuel line pressures.  

 

Table 1 
Fuel characteristics of Chlorella Protothecoides microalgal biodiesel  

Characteristics Chlorella protothecoides microalgal biodiesel Diesel 

Viscosity @ 40 °C 4.41 cSt 3.029 cSt 

Density 0.859 gm/cm3 0.837 gm/cm3 

Flash point 166 °C 75 °C 
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Fig. 1 Engine testing set up 

2.2 Testing procedure  

In this study, a variable compression engine was used so that different compression ratio (CR) can be used for fuel testing. The 
fuel injection pressure was also varied to investigate the effects on NOx emission. The engine load was varied with the help of eddy 
current dynamometer to explore the effects of engine load in NOx emission. The engine was antically run for 15 minutes to stabilize 
the engine cooling and lubrication temperature and the engine was run at different settings by varying load, CR and fuel injection 
pressure. The NOx data was recorded at different settings.  

2.3 Soft computing  

2.3.1. Response surface methodology  

RSM is a collection of computational and mathematical methodologies that are applied to define and evaluate the relationships 
between a set of independent factors and a number of dependent variables (responses) in an environment (Nazarpour et al., 2022). 
Numerous applications of the RSM approach may be found in the fields of experimental design, optimization of processes, and quality 
improvement. It is possible that RSM will be of particular use in the Analysis of Variance (ANOVA), and desirability-based 
optimization procedures when it relates to the context of engine emissions data (P. Sharma & Sharma, 2021, 2022). 

Experiments that are aimed to systematically study the effects of different engine parameters (like fuel blends, injection pressure, 
and timing, air-fuel ratio, etc.) on emissions data (e.g. as NOx) may be planned with the use of RSM, which can be of assistance in 
the process of preparing successful experiments. When researchers make use of RSM, they are able to find the components that have 
the most influence as well as the optimal values for those factors, all while reducing the number of trials that are necessary. In the 
process of assessing the experimental data and establishing the significance of each component as well as the mechanisms by which 
they interact with other components in connection with engine emissions, the simultaneous use of RSM and ANOVA may be of great 
assistance. Because of this, researchers are able to identify the factors that are having a statistically significant impact on emissions, 
and they can then use this information to prioritize those components for future improvement (Pereira et al., 2021; Said et al., 2023). 
It is also possible to combine RSM with desirability functions with the goal of optimizing many engine parameters simultaneously 
while taking into account conflicting goals while doing so. It is the target values or variations that are provided that define the 
desirability score that is awarded to each response variable by desirability algorithms. This score is decided by the information that 
is provided. Desirability functions lead the way to optimization by discovering the optimal combination of parts that match the needed 
criteria. RSM is beneficial in the process of generating forecasting models for the responses, and desirability functions are also helpful 
in the process of optimizing (Harrington, 1965; Jain et al., 2023; Lei et al., 2019). 
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2.3.2. Extreme gradient boosting  

Extreme Gradient Boosting (XGBoost) regression is a cutting-edge machine learning approach that has completely transformed 
the field of predictive analytics. XGBoost is an algorithm that has exceptional performance in a number of data science tasks and 
applications in the real world, providing speed and accuracy that have never been seen before. Both gradient boosting and ensemble 
learning are the driving forces behind it. XGBoost's superiority may be traced back to its forward-thinking approach to decision trees 
and boosting. The XGBoost algorithm makes use of a one-of-a-kind gradient boosting framework that places equal importance on 
mathematical precision and computing efficiency. Through the successive generation of multiple weak learners (decision trees) and 
the repeated revision of their predictions, XGBoost can construct a model that is both incredibly exact and resilient, surpassing the 
capabilities of a great number of previous methods (Chen & Guestrin, 2016; Qiu et al., 2022).  

The capability of XGBoost to manage large data sets that include a high level of complexity is one of its most notable strengths. 
The use of sophisticated normalization algorithms and concurrent processing enables XGBoost to handle millions of features and 
observations in a short amount of time. This makes it an excellent option for organizations that deal with enormous amounts of data, 
such as those in the fields of biology, e-commerce, and banking operations. The fact that XGBoost is completely transparent and 
easy to understand is yet another important aspect of this program. By providing a clear view of feature significance and commitment 
to the final forecast, XGBoost assists data analysts and domain experts in gaining important insights into the underlying properties 
of the data. This is accomplished by providing a clear perspective on the data. This interpretability is beneficial not just to the 
trustworthiness of the model but also to the design of features and decision-making that is driven by data (Amjad et al., 2022; Pan et 
al., 2022; P. Zhang et al., 2022).  

3. Results and discussion  

3.1 Data analysis  

The data gathered in the engine testing at different operational setting was used for model development. The data was also employed 
for plotting of correlational heatmap and data variation as depicted in Figs. 2a and 2b, respectively. It can be observed that there is 
a strong positive correlation between engine load and NOx emission. The correlation between these two is strong that it makes other 
factors negligible.   

 

(a)                                                                        (b) 

Fig. 2 NOx data (a) correlational heatmap; (b) distribution map 

3.2 Model development  

The python based open source libraries were employed for model development. The following pseudo code was used in this 
work 

o Import necessary libraries: pandas, xgboost, train_test_split, r2_score, mean_squared_error, mean_absolute_error, and 
matplotlib.pyplot. 

o Load data using pandas read_excel function and store it in a variable called data. 
o Split the data into predictor variables (X) and response variable (y) by selecting appropriate columns from the data. 
o Split the data into training and testing sets using train_test_split function from sklearn, with a test size of 0.2 and random 

state set to 42. 
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o Initialize an XGBoost model (XGBRegressor). 
o Train the XGBoost model on the training data (X_train, y_train) using the fit method. 
o Use the trained model to make predictions on both the training and testing data (X_train and X_test) using the predict 

method, and store the predictions in y_train_pred and y_test_pred respectively. 
o Calculate performance metrics - R², MSE, and MAE - for both training and testing predictions using appropriate functions 

from sklearn. 
o Define marker size, font size, and font color for the plots. 
o Plot the actual vs. predicted values for the training set using scatter plot with blue color and label 'Actual vs Predicted 

(Training)', with annotations for performance metrics. 
o Plot the 1:1 line on the plot to visually assess the fit of the model. 
o Show the legend and display the plot. 
o Plot the actual vs. predicted values for the testing set using scatter plot with red color and label 'Actual vs Predicted 

(Testing)', with annotations for performance metrics. 
o Plot the 1:1 line on the plot to visually assess the fit of the model. 
o Show the legend and display the plot. 

The results of models during model training as well as testing are deputed in Fig. 3a and 3b, respectively. The graphical 
presentation shows a robust prediction framework in both cases.  The R2 values were 0.9998 and 0.9994 during the phases of model 
training and testing. In both cases the mean squared error was on lower side as 0.0002 and 0.0014 for model training and testing, 
correspondingly (Wang et al., 2020; M. Zhang et al., 2022).   

 

(a) 

 

(b) 

Fig. 3 Model performance during (a) training and (b) testing phases  
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3.3 Response surface  

The data acquired using engine testing was used for model development and optimization using design expert software-based 
ANOVA and desirability-based optimization. The ANOVA outcomes for the test data are listed in Table 2.  

 

Table 2 
ANOVA results  

Source SUM of Squares df ‘F’ Value ‘p’ value (Prob > F)  

Model 712559.3 9 284.6111 < 0.0001 significant 

CR 'C' 2218.8 1 7.976116 0.0078  

FIP 'F' 5.633333 1 0.020251 0.8877  

Load 'L' 700484.4 1 2518.093 < 0.0001  

CF 26.45 1 0.095082 0.7596  

CL 2912.067 1 10.46826 0.0027  

CF 0.016667 1 5.99E-05 0.9939  

C^2 1026.844 1 3.691288 0.0629  

F^2 780.2778 1 2.804933 0.1029  

L^2 5104.794 1 18.35065 0.0001  

error 9736.317 35    

Cor Total 722295.6 44    

 
 
 
The relevance of the model is shown by the Model F-value, which is 284.61. This figure suggests that there's only a 0.01% 

possibility that such a huge "Model F-Value" may be the result of noise. When the value of "Prob > F" is less than 0.0500, it indicates 
that the model terms are significant. For the sake of this discussion, the words A, C, AC, and C2 are regarded as being relevant. 
Values that are greater than 0.1000, on the other hand, indicate insignificance. When there are a large number of model terms that 
are not significant (with the exception of those that are required for hierarchy), decreasing the model may improve its effectiveness. 
The model has a high level of explanatory power, as seen by its standard deviation value of 16.68 and its R-squared value of 0.9865. 
The adjusted R-squared value of 0.9831 and the predicted R-squared value of 0.9782 are in reasonable agreement, which indicates 
that the model is valid. Having a signal-to-noise ratio that is sufficient for efficient exploration of the design space is shown by the 
fact that the Adeq. A precision of 49.638 is higher than the intended threshold of 4 (Dimitriou et al., 2013; Srinidhi et al., 2021; Thodda 
et al., 2023). 

Fig. 4 depicts the results of the RSM base analysis. Fig. 4a depicts the measured vs model-predicted values of NOx results. It 
can be observed that most of the data points lie on the best-fit line. Figs. 4b and 4c depict the 2-D FIP vs CR contour plots and 
surface diagrams, respectively.  Fig. 4d Similarly, the contour plot of CR vs engine load indicates how these factors affect NOx 
emissions.  Fig. 4e the surface plot of CR against load provides a more thorough view of NOx emission patterns when both 
parameters fluctuate. Fig. 4f The contour plot of FIP vs engine load illustrates the interaction of these factors and their impact on 
NOx emissions. Fig. 4g Finally, the surface diagram of FIP against load offers a full perspective of NOx emission patterns influenced 
by both factors. Together, these visualizations provide light on the complicated interactions between engine operating parameters 
and NOx emissions, assisting in the optimization of combustion processes for decreased environmental effects. 
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(a) 

 
(b)  

(c) 

 
(d) 

 
(e) 

 
(f)  

(g) 

Fig. 4 RSM based NOx mdoel based (a) actual vs predictd; (b) CR vs FIP contour plot; (c) CR vs FIP surafce diagram; (d) CR vs 
load contour plot; (e) CR vs load surafce diagram; (f) FIP vs laod contour plot; (g) FIP vs load surface diagram 
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3.4 Desirability based optimization 

The outcomes of desirability-based optimization show that the objectives that were set were achieved within the parameter 
ranges that were established. This demonstrates that appropriate parameter tuning was performed in order to achieve improved 
performance. The Compression Ratio (CR) has been effectively kept within the required range of 17 to 18, which aligns with the 
assigned significance level of 3, as listed in Table 3. This is one of the metrics that has been optimized. Similar to the previous 
example, the Fuel Injection Pressure (FIP), which is essential for the efficiency of the engine, has been adjusted to 207.81 bar. This 
value falls within the planned range of 200 to 240 bar and has a high significance level of 3. The load on the engine, which is critical 
for maintaining operating stability, has been adjusted to 20.29 percent, which satisfies the stated range of 20 percent to 100 percent 
with equal meaning. Notably, the optimization procedure has also successfully reduced NOx emissions to 222.8 ppm, which is much 
more than the intended range of 223 to 599 ppm. This is of the highest significance. These findings provide further evidence that 
desirability-based optimization is an effective method for reaching desired performance objectives across crucial engine parameters 
while also reducing detrimental effects on the environment (Harrington, 1965; Kumar et al., 2022; Lei et al., 2019). The ramp diagram 
is depicted in Fig. 5a while the bar plot is shown in Fig. 5b.  
 
 
 
Table 3 
Optimized setting and results  

Name Goal Lower limit Upper limit Importance Optimized value 

CR is in range 17 18 3 17 

FIP, bar is in range 200 240 3 207.81 

Load, % is in range 20 100 3 20.29 

NOx, ppm minimize 223 599 1 222.8 

 
 
 
 

 
(a)  

(b) 
Fig. 5 Desirability based (a) Ramp plot; (b) bar plot 

4. Conclusion 

In conclusion, employing a Chlorella Protothecoides microalgal biodiesel-diesel mix to power a VCR engine, together with the 
integration of XGBoost and RSM for model prediction and optimization, produced encouraging results. A robust prediction 
framework was developed with XGBoost. It achieved a R² values of 0.9998 and 0.9994 during training and testing, respectively. In 
addition, the MSE was low at 0.0002 and 0.0014 throughout the model training and testing stages, demonstrating the precision of 
models. RSM-based desirability approach for optimization confirmed these results by successfully achieving predefined targets within 
defined parameter ranges. Notably, Compression Ratio (CR) was successfully maintained within the needed range of 17 to 18, while 
Fuel Injection Pressure (FIP) and engine load were adjusted to 207.81 bar and 20.29%, respectively, in accordance with the prescribed 
ranges and importance levels. Most impressively, NOx emissions were decreased to 222.8 ppm, proving the efficiency of the 
optimization approach in reducing environmental impact. The ramp diagram and the bar plot give further information about the 
optimization process. Overall, our results demonstrate the effectiveness of desirability-based optimization in meeting targeted 
performance goals across crucial engine parameters while also addressing environmental issues. 
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