
J. Emerg. Sci. Eng. 2024, 2 (2), e23 
| 1 

https://doi.org/10.61435/jese.2024.e23  
ISSN: p-ISSN: 3026-0817; e-ISSN: 3026-0183.The Author(s). Published by CBIORE 

 
Contents list available at CBIORE journal website 
 

Journal of Emerging Science and Engineering 
 

Journal homepage: https://journal.cbiore.id/index.php/jese/index 

 

 

An insight from homogeneity testing of long-term rainfall datasets 
over East Java, Indonesia  

Heri Mulyantia,b* , Istadia,c , Rahmat Gernowoa,d  

aDoctoral Program of Environmental Science, Universitas Diponegoro, 50241, Semarang, Indonesia 
bFaculty of Science and Engineering, Universitas Bojonegoro, 62119, Bojonegoro, Indonesia 
cDepartment of Chemical Engineering, Universitas Diponegoro, 50275, Semarang, Indonesia 
dDepartment of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, 50275, Semarang, Indonesia 

Abstract. . Robust, reliable, and trustworthy ground observation datasets are the preliminary requirement for assessing the impact of climate change 
over regions. Principal testing to assess the quality of ground observation rely on the missing data and homogeneity result. The study used 40 years 
of monthly rainfall documented from different topographical features in the monsoonal region of East Java, Indonesia. The test included annual 
rainfall, early rainy season (October-November-December), and primary rain season (January-February-March). The homogeneity of rainfall 
determined by absolute technique: Pettitt’s test, the Standard Normal Homogeneity Test, the Buishand Rank Test, and the von Neumann Ratio. 
Among the time series, October-November-December observation results in better homogeneity. However, the rainfall datasets during primary rainy 
season showed the worst homogeneity. By performing annual and seasonal homogeneity test from 67 rainfall stations: 5 stations out of data length 
required, 5% stations ‘rejected’, 11% ‘suspect’, 11% ‘doubtful’, and 73% were ‘trusted’. Therefore, a total of 45 stations can be used as metadata for 
relative comparison and 7 stations can be considered to be useful for analysis despite ‘doubtful’. The remaining 10 stations need careful consideration 
to be used for future water management.  Change point detected particularly between the year of 1997 through 2000. Pettitt’s test has outstanding 
results in the case of extreme climatic anomaly, but less sensitive of continuous abrupt change. The von Neumann test could detect abnormal data, 
but was not suitable for datasets containing few extreme values. The insights from homogeneity testing were: a) it is important to remove any outliers 
in the datasets before conducting homogeneity testing, b) both parametric and nonparametric homogeneity tests should be performed, and c) 
comparisons should be made with surrounding rainfall stations. Comparison with trusted long-term rainfall data is valuable for stations labeled as 
‘doubtful’ or ‘suspect’ to mitigate false detections in individual homogeneity tests. The identified ‘useful’ rainfall data can then serve as reference 
stations for relative homogeneity tests. These findings suggest that reference stations should be assessed within similar rainfall zones.   
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1. Introduction 

Human influence has affect the warming of the ocean, atmosphere, and land (Intergovernmental Panel On Climate Change (IPCC) 
2023). The impacts apparently increasing on regional and local scales. Climate change has altered rainfall amount, distributions, and 
seasonal patterns (Anripa et al. 2023; Chen et al. 2023; Gu et al. 2020). As global warming continues, every region is expected to 
undergo more frequent and diverse changes in factors impacting climate. Therefore, knowledge on possible outcomes and 
assessment of climate-related risks regarding as important path for reducing the climate risk to the community. The first initial step 
is to ensure valid and reliable climate dataset as climatological analysis rely on data documentation. 

Robust, reliable, and trustworthy ground observation dataset are the preliminary requirement for assessing the impact of climate 
change over regions (Rummukainen 1997, 2016). However, the majority of long-term raw climate time series do not adhere to this 
principle and are internally heterogeneous. Heterogeneous time series meaning they are not uniform in nature and consequently 
unsuitable for statistical climate change analysis. Non-climatic factors, such as alterations in measurement location, can significantly 
influence values and caused distortions in the statistical behavior of the time series. These distortions may lead to erroneous 
conclusions since the abrupt can be comparable to climate change itself (Aguilar et al. 2003). Therefore, it's crucial to conduct a 
thorough investigation to identify and rectify errors in the data before studying observational records.  

Homogeneity tests can be categorized into absolute and relative tests. Absolute tests are based on the characteristics of individual 
stations, while relative homogeneity utilizes data from nearby stations with similar characteristics (Aguilar et al. 2003; Wijngaard et 
al. 2003). A time series becomes non-homogeneous when the mean of the series does not remain stable over time or when changes 
appear in the series. Climate series is considered homogeneous when its variations are caused solely by changes in weather and 
climate, without any influence from non-climatic factors that mislead the true climate variation. 
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The study examines the homogeneity of long-term rainfall datasets in East Java as a preliminary step for climate change 
mitigation. East Java Province is one of the drought-prone regions on the island of Java (Aldrian and Djamil 2008; D’Arrigo et al. 
2006; Mulyanti et al. 2023). East Java is identified as a priority area for drought management in Indonesia. However, rainfall data 
testing has been relatively limited for East Java Province. Previous studies have tested the spatial trends of rainfall (Aldrian and 
Djamil 2008; Avia 2019; Wahab et al. 2009).  

Therefore, the aim of this study is to spatially map the results of homogeneity tests to evaluate the performance of rainfall datasets. 
Although rainfall testing has been widely conducted (Akinsanola and Ogunjobi 2017; Arikan and Kahya 2019; Ay 2020; de Gois et al. 
2020; Hadi et al. 2019; Kabbilawsh et al. 2023; Yaşa et al. 2023), comprehensive examinations of how data may fail one test but 
succeed in another have not yet been undertaken. This study emphasizes the importance of meticulously identifying rainfall data by  
distribution and time series patterns. It aims to enhance understanding of the appropriateness of each homogeneity test.. 

2. Data and Methods 

2.1 Data 

This study utilized data from 61 rain gauge stations distributed throughout East Java Province. The gauge stations were distributed 
based on the north-south topography, with a higher concentration in the western region and fewer in the east. The data were 
documented by the Department of Public Works and Water Resources of East Java Province. The selected rain gauge stations for 
analysis should be spanning over 20 years. The data types included annual total rainfall and rainfall during the early and primary 
rainy season. In East Java, September is typically a dry month. Consequently, the early rainy season is defined as October-November-
December (OND), while the primary rainy season is defined as January-February-March (JFM). Rainfall data from the dry season 
were excluded from homogeneity testing due to their high vulnerability (As-syakur et al. 2016; Tanaka 1994). Missing data accounted 
for less than 5% of the dataset and were imputed using the time series mean of the corresponding month. 

The rain gauge stations are evenly distributed across East Java Province, both meridionally and latitudinally. Observations 
indicate that the rainfall characteristics on Java Island are influenced by topography. Horizontally, the region can be divided into 
western and eastern parts. Vertically, it can be categorized into the northern coast, central lowlands, and southern mountains. Fig. 1 
shows the distribution of rain gauge stations in East Java Province, covering the entire topography, both vertical and horizontal. 
 

 

Fig. 1 Location of rain gauge for homogeneity test 
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2.2 Methods 

Non-climatic factors included on the climate documentary can be elude using homogeneity test. The absolute homogeneity test of 
61 stations were assessed using 4 methods: Pettitt test, the Standard Normal Homogeneity Test (SNHT), the Buishand Ratio Test 
(BRT), and the von Neumann ratio test. Hypothesis testing the homogeneity test are: 𝑯𝟎 the data homogeneous, while alternate 
hypothesis 𝑯𝒂 that there is found a break inside the time series dataset for significance level of 5%. Pettitt, SNHT, and Buishand 
methods are categorized as break year identifier for time series.  

Homogeneity testing was conducted using four methods: Pettitt's, SNHT, Buishand, and von Neumann. These four tests have 
been widely employed in various studies (Akinsanola and Ogunjobi 2017; Arikan and Kahya 2019; Ay 2020). The rainy season was 
chosen as a complement to annual testing because rainfall is concentrated at over 40% in JFM. Meanwhile, OND rainfall accounts 
for approximately 30% of the total annual rainfall.  

 
Pettitt’s Test 

Pettitt’s test is conducted to observe any significance change of data series by transforming observation values into rankings (Pettitt 
1979). The test categorized as nonparametric statistic. The highest value is assigned rank number 1, descending to the lowest value 
of N (Arikan and Kahya 2019). 
a. The Pettitt statistical calculation consider the value V, which is the sum of observations substracted by the ranking of 𝑖, computed 

as follows: 

 

𝑉𝑖 = (𝑁 + 1) − 2𝑅𝑖  (1)   

 
where: Ri represents the ranking of i, and N denotes the total observations.  
 
b. The value U is used to determine the maximum cumulative of  𝑉𝑖 formulated as:  

 

𝑈𝑖 = 𝑈𝑖+1 + 𝑉𝑖  (2) 
 
Because there is a possibility of negative values,  𝑈𝑖 converted into absolute form 
 

 𝑈𝑖,𝑎𝑏𝑠 = |𝑈𝑖|   (3) 

 

The largest value of 𝑈𝑖,𝑎𝑏𝑠then called as PT . The homogeneity of the time series then determined by comparing the value of Pettitt’s 

p with α = 0.05. The Pettitt’s p calculated as: 
 

 𝑝 = 2 𝑒𝑥𝑝 (
−6𝑃𝑇

2

𝑇3+𝑇2
)  (4) 

 
where p = Pettitt’s value, PT  is the largest value of  𝑈𝑖,𝑎𝑏𝑠 from Eq (3), T is  total observations. Once the value of p smaller than the α, 

the null hypothesis rejected and means that there is a substantial change on the dataset.  
 
Standard Normal Homogeneity Test (SNHT) 

This test was conducted to detect significant changes by transforming the series into normal z scores (Alexandersson 1986). In 
essence, this technique attempts to divide data into two phases, before T(n) and after T(n). If there are significant changes between 
the data before and after T(n), then the data is considered inhomogeneous. This test operates under the assumption that data with 
non-normal distribution must be transformed into standard normal (z) to adhere the standards. SNHT is defined as (Alexandersson, 
1986): 
 

𝑇(𝑘) = 𝑘 𝑧𝑖̅̅ ̅2 + (𝑛 − 𝑘)𝑧2̅
2  where 𝑘 = 1, 2, … . . , 𝑛   (5) 

   
where 𝑧1̅ is the mean of z-value mean series before, and 𝑧2̅ is the mean of z-value after the break year to n number of observations.  
 
The probable break year of the record is assumed to be the maximum value of 𝑇(𝑘) and can be formulated as: 
 
𝑇𝑛 = max{𝑇(𝑘)} 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑛    (6)  

Table 1 
Critical value of 𝑇0 based on level of significance for SNHT  

sign. Total observation (n) 

20 30 40 50 70 100 

1% 9.56 10.45 11.01 11.38 11.89 12.32 

5% 6.95 7.65 8.10 8.45 8.80 9.15 
Source: Arikan and Kahya (2019) 
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The relationship between 𝑇(𝑛) and 𝑇0 are calculated as (Jarušková 1996): 
 

𝑇0 =
𝑇(𝑛)2𝑛

𝑇(𝑛)2+(𝑛−2)
      (7) 

 
The critical value of 𝑇0 represented as (Arikan and Kahya 2019) in Table 1 
 
Hypothesis testing for 𝑇0 as follow: 
𝐻0 the data homogeneous 
𝐻𝑎 the data non homogeneous 
𝐻0 is rejected if 𝑇0 is above certain level of based on Table… 
 
Buishand Range Test (BRT) 

The Buishand range test (Buishand 1982) calculate the adjusted partial sums of the statistics to identify any inhomogeneities. The 
test can actually be used for various types of distributions, but it is more suitable for normally distributed data. The Buishand test is 
sensitive to breakpoints in the middle of a time series (Hawkins 1977). The adjusted partial sums of the statistics are calculated: 
 

𝑆0
∗ = 0 𝑎𝑛𝑑 𝑆𝑘

∗ = ∑ (𝑌𝑖 − 𝑌̅)𝑘
𝑖=1   where k = 1, …, n   (8) 

 
In a homogeneous series, the values will oscillate around zero, as there are no systematic deviations of the Yi values relative to their 
mean. However, if a break occurs in year K, the value of 𝑆𝑘

∗ reaches maximum or minimum around the year k = K. 
The maximum and minimum value of 𝑆𝑘

∗ are used to calculate the rescaled adjusted range, R statistics. The R statistic is value to 
accept or reject null hypothesis. 
 

𝑅 =
( max

0≤𝑘≤𝑛
𝑆𝑘

∗− mi𝑛
0≤𝑘≤𝑛

𝑆𝑘
∗)

𝑠
     (9) 

   

Here, s denoted as standard deviation of the dataset. The 𝑅/√𝑁 is then compared to the critical value (Buishand 1982). 𝐻0 rejected 

if the value of 𝑅/√𝑁 is greater than critical value from Table 2. The Pettitt’s, Buishand Range Test, and SNHT could detect the break 
year of the record.  
 
Table 2 
Critical value of 𝑇0 based on level of significance of Buishand Range Test  

sign. Total observation (n) 

10 20 30 40 50 100 

5% 0.93 1.43 1.50 1.53 1.55 1.62 
Source: Buishand (1982) 

 
 
Von Neumann 

The von Neumann ration is defined for the expectation of N >2 as homogeneous. 
 

𝑁 =
∑ (𝑌𝑖−𝑌𝑖+1)2𝑛−1

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

      (10) 

 
where, 𝑌𝑖 is the observed data of i year and 𝑌̅ denotes the mean of the time series: 
 

 𝑌̅ =
1

𝑛
∑ 𝑌𝑛

𝑖=1       (11) 

 
Four homogeneity criteria are established across the four tests: a) if all tests pass, it is considered 'trusted'; b) if one test fails, it is 
categorized as 'doubtful'; c) if two tests fail, it is categorized as 'suspect'; and d) if 3-4 tests fail, it is deemed 'reject'. The tests are 
conducted for both annual and seasonal rainfall. The homogeneity status is determined by the lowest criterion in the annual, OND, 
and JFM tests. If any test meets the 'doubtful' criterion, the final status is 'doubtful'. If any test meets the 'reject' criterion, the 
homogeneity status is 'reject'. 

3. Results and Discussions 

3.1 Annual Testing 

Fig. 2 shows that 17% of stations did not pass the von Neumann homogeneity test of annual time series, whereas only 4% - 7% of 
stations failed the Buishand and Pettitt tests. A total of 7 stations (10%) failed the SNHT test. Both the Pettitt and SNHT tests reveal 
the similar stations experiencing inhomogeneous conditions. In contrast, stations failing the Buishand test are located on Madura 
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Island. The Buishand results for Madura Island closely resemble those of the SNHT, but exhibit discrepancies for the main island 
region. The von Neumann test identifies stations failing the test in a distinct pattern compared to the other three tests. 
 

 

Fig. 2 Homogeneity test for total annual rainfall, a) Pettitt’s, b) SNHT, c) Buishand, d) von Neumann. 

 
The break years identified by both the Pettitt and SNHT tests typically align closely, often differing by only one year (Table 3). 

Similar break years indicate a difference of only one year between tests. Break years are considered quite similar when two out of 
three series show similarity. Dissimilar break years occur when the three tests indicate different times. From Table 3, it can be inferred 
that break years primarily occurred after 2000. However, the years causing inhomogeneity in the time series are located in 1990, 
2000, and 2010. SNHT demonstrates sensitivity in detecting the break year primarily at the beginning or end of the time series, 
consistent with prior research findings (Ay 2020; Toreti et al. 2011). The von Neumann criteria for discerning non-homogeneity 
prioritize the data's mean. The red crosses symbol marked the stations with short length of data. 

 
Table 3 
Change point detected from annual dataset. Nonhomogeneous series bold with color. 

No Station n (year) 
Break Year 

Similarity Year Pettitt SNHT Buishand 

1 Tuban Belikanget 39 2001 2002 2001 
S 

2 Bojonegoro 42 1987 1987 1987 
S 

3 Baureno  42 1997 1997 1997 
S 

4 Bojonegoro-Sugihan 42 2005 2007 2006 
S 

5 Lamongan Ngimbang 40 2009 2009 2008 
S 

6 Lamongan Jabung 41 2004 1994 1994 
QS 

7 Lamongan Blawi 41 2013 2015 2014 
S 

8 Gresik Tambakombo 40 2001 2002 2001 
S 

9 Gresik Lowayu 40 1997 1997 1997 
S 

10 Situbondo Wringinanom 30 2013 2014 2013 
S 

11 Madiun Caruban 41 2001 2002 2001 
S 

 

 

a) 

d) 

b) 

c) 
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No Station n (year) 
Break Year 

Similarity Year Pettitt SNHT Buishand 

12 Madiun Gemarang 41 1997 1997 1997 
S 

13 Madiun Gombal 30 2001 1991 2001 
QS 

14 Sidoarjo-Budug Bulus 37 1992 1992 1992 
S 

15 Surabaya Gubeng 42 2004 2010 2009 
QS 

16 Pasuruan P3GI 29 1999 2009 2009 
QS 

17 Pasuruan Kasri 31 2009 2009 2009 
S 

18 Probolinggo Segaran 31 2003 2002 2001 
S 

19 Probolinggo Ronggo Tali 30 1997 1993 1997 
QS 

20 Probolinggo Adiboyo 31 2005 1991 2005 
DS 

21 Problolinggo Lumbang 31 2008 2009 2009 
S 

22 Nganjuk Matokan 27 2003 2003 2003 
S 

23 Nganjuk Ngrambek 27 2003 2009 2009 
QS 

24 Mojokerto Pacet 40 1993 1980 1992 
QS 

25 Magetan Lambeyan 39 2009 1980 2009 
QS 

26 Magetan Sarangan 40 1999 1980 1999 
QS 

27 Jombang Mojoagung 30 2001 2009 2008 
QS 

28 Ngawi Walikukun 38 2001 2011 2010 
QS 

29 Sumenep Ambunten 42 2009 2010 2009 
S 

30 Sumenep Kebonagung 42 2009 2010 2009 
S 

31 Sampang Ketapang 42 2001 2001 1998 
QS 

32 Pamekasan Pakong 36 2009 2010 2009 
S 

33 Pamekasan Samiran 34 1990 1990 2019 
QS 

34 Bangkalan Sepulu 40 1990 1990 1990 
S 

35 Bangkalan Tragah 42 1996 2015 2009 
DS 

36 Banyuwangi Alasbulu 24 2015 2016 2015 
S 

37 Banyuwangi Dadapan 26 2015 2016 2015 
S 

38 Malang Dampit 21 2010 2016 2015 
QS 

39 Trenggalek Dongko 31 1997 1997 1997 
S 

40 Blitar Gandusari 21 2010 2014 2010 
QS 

41 Malang Jabung 21 2013 2014 2013 
S 

42 Blitar Kayumanis 21 2009 2018 2009 
QS 

43 Lumajang Kedungwringin 16 2015 2016 2015 
S 

44 Banyuwangi Licin 26 2011 2011 2011 
S 

45 Blitar Lodoyo 21 2009 2000 2009 
S 

46 Trenggalek Munjungan 31 2002 2002 2002 
S 

47 Malang Pagak 21 2009 2000 2009 
QS 

48 Tulungagung Pagerwojo 21 2015 2009 2009 
QS 

49 Tulungagung Paingan 21 2002 2017 2003 
QS 

50 Lumajang Pronojiwo 30 1995 1992 1995 
QS 

51 Malang Sitiarjo 21 2003 2009 2009 
QS 

52 Kota Malang Sukun 21 2012 1999 2012 
QS 

53 Lumajang Wonokerto 40 1990 1990 1990 
S 

54 Bondowoso Glendengan 37 2006 2007 2006 
S 

55 Bondowoso Kesemek 24 2012 2013 2012 
S 

56 Bondowoso Sentral PU 32 2007 1999 1999 
QS 

57 Ponorogo Babadan 42 2001 2016 2012 
DS 

58 Ponorogo Balong 40 2012 2013 2012 
S 



H.Mulyanti et al  J. Emerg. Sci. Eng. 2024, 2(2), e23 

| 7 

 

ISSN: 3026-0817(p)/3026-0183(e)/© 2024. The Author(s). Published by CBIORE 

No Station n (year) 
Break Year 

Similarity Year Pettitt SNHT Buishand 

59 Pacitan Nawangan 41 1989 2010 2009 
QS 

60 Pacitan Pacitan 41 1997 2018 1997 
QS 

61 Pacitan Sudimoro 41 1994 1981 1983 
DS 

62 Pacitan Tegalombo 40 2009 2010 2009 
S 

Where: S = similar, QS = quite similar, and DS = dissimilar 

 

3.1 Seasonal Testing 

The occurrence of inhomogeneous rainfall time series is less frequent at the onset of the rainy season and becomes more prevalent 
during the main rainy season. Testing suggests that seasonal rainfall is more susceptible to inhomogeneity compared to annual 
testing. In the JFM period, stations identified as non-homogeneous based on the Pettitt, SNHT, Buishand, and von Neumann tests 
are 10%, 15%, 3%, and 26%, respectively. Conversely, the number of non-homogeneous stations for OND is lower across all four 
tests, at 3% (Pettitt), 4% (SNHT), 3% (Buishand), and 12% (von Neumann). Nonhomogeneous data is predominantly concentrated in 
Madura Island, consistent with the findings of annual data testing. Both annual and seasonal tests suggest that von Neumann is more 
sensitive to changes in the data series compared to other tests. 

Fig. 3 illustrates that the break years for OND occurred in 1997 and 2020 based on the Buishand test. The year 1997 is considered 
an anomaly due to the El Niño event. Break years identified by SNHT during a similar season span between 2000 and 2018 and are 
found in three locations. However, the von Neumann test reveals a larger number of failed observations, with seven locations 
regarded as inhomogeneous.  

The highest number of failed tests occurred during JFM (Fig. 4), which is the primary rainy season. At least 7 stations failed in 
Pettitt’s test, while 9 stations failed in SNHT. However, the Buishand results are comparatively better across all tests. Von Neumann 
yielded the poorest result, with 18 stations failing. Stations that failed the test are concentrated in separate topographic areas but are 
rarely found near Malang. The most frequent occurrences of inhomogeneity are observed in Madura Island, the northern coast of 
the main island, and the western part of the island. The primary rainy season accounts for approximately 40% of the total rainfall, 
and the inhomogeneity of this season may affect the overall data quality. Break years for JFM occurred during La Niña events, such 
as 2016, 2001, and 1990.  

 

 

Fig. 3 Homogeneity test for total October-November-December rainfall, a) Pettitt’s, b) SNHT, c) Buishand, d) von Neuman 

 

 

a) b) 

c) d) 
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Fig. 4 Homogeneity test for total January-February-March rainfall, a) Pettitt’s, b) SNHT, c) Buishand, d) von Neumann 

 

 

3.3 Insights from Homogeneity Test 

3.3.1 Pettitt’s Test 

Fig. 5 provides a clearer illustration of how the Pettitt test does not consider continuous changes in the same positive/negative 
direction as an inhomogeneity. An example of this occurs at the Madiun-Caruban station and the Sumenep-Ambunten station. While 
Sumenep-Ambunten passed Pettitt’s test but failed another test, Madiun-Caruban only failed Pettitt’s change detection. Comparing 
the average rainfall before and after the breakpoint year reveals insights into Pettitt's limitation in identifying breakpoints when the 
dataset experiences uniform changes. This occurs due to the lack of variation in the ranking of data points. Figure ... illustrates 
significant variation in data ranking after the breakpoint year, with values either markedly high or low. This contrasts somewhat with 
the observational data at Sumenep-Ambunten, where ranking changes occur gradually. 

Pettitt's test involves ranking data which suitable for very skewed data. The test apply naturally to datasets presented in ranks 
where numerical distinction lack interpretability (Krzywinski and Altman 2014). However, nonparametric testing can handle 
unexpected, outlying observations (Tsybakov 2009; Whitley and Ball 2002) that may arise due to climate anomalies. For normally 
distributed data, it is advisable to obtain hypothesis testing by using parametric test (Whitley and Ball 2002). For the Madiun-Caruban 
case, the reliability of Pettitt's test status could be elevated from ‘doubtful’ into ‘trusted’.  

An opposite case which occurred in Sumenep-Ambunten proven how Pettitt’s less sensitive to continuous abrupt change (Fig. 6). 
Despite passing the nonparametric Pettitt test, this station failed three other tests. Upon closer examination, the Pettitt test failed to 
detect significant data changes post-2009 indicative of inhomogeneities. Here, presented that Inhomogeneities in the Pettitt test may 
be less accurately identified when nonhomogeneous data coincide with gradual changes. 

 
 
 

 

 

a) b) 

c) 
d) 
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Fig. 5 Station which failed Pettitt’s test, but passed 3 other tests. a) Madiun-Caruban station comparison before and after break year, 
which did not pass the Pettitt test but passed the other three tests; b) Madiun-Caruban 3-month moving average. Dashed box 

indicate break of the record 

 

 

 

Fig. 6 Station which passed Pettitt’s test, but failed 3 other tests. a) Sumenep-Ambunten station comparison before and after break 
year, which passed the Pettitt’s but failed other three tests; b) Sumenep-Ambunten 3-month moving average. Dashed box indicate 

break of the record 

 

3.3.2 SNHT 

The SNHT test yields results similar to Pettitt, detecting the presence of break years. The difference is that SNHT is a parametric 
test that compares the original data before and after the change. The only station that did not pass the SNHT test is Ponorogo-Balong. 
Based on Fig. 7, the break year is identified at the end of the time series. Similar results are also mentioned in previous research. 
(Pandžić et al. 2020; Toreti et al. 2011). Upon closer inspection, the changes in Ponorogo-Balong can be considered relatively small. 
However, the results of the moving average indicate that significant changes occurred at the end of the time series. Change point 
may be caused by both climatic and non-climatic event. However, break point or inhomogeneity denotes a change point caused by 
non-climatic factors.   

Hence, it is important to emphasize that a change point signifies the influence of one or more factors, both climatic and non-
climatic whereas a break point or inhomogeneity denotes a change point instigated by non-climatic factors. The primary objective 
of homogenization is to eliminate non-climatic factors while preserving the climatic signal. SNHT, along with other methodologies, 
should be utilized by comparing series with a reference to ascertain reliable break points (Aguilar et al. 2003; Alexandersson and 
Moberg 1997; Peterson and Easterling 1994; Toreti et al. 2011). Furthermore, it's imperative to consider the limitations of this test 
during the homogenization procedure. Incorrect application of homogenization techniques to climate data could result in unreliable 
climate analyses. Employing multiple tests to compare detected break points is an effective strategy, particularly when metadata is 
unavailable. This approach yields robust results, preventing overestimation and correction of false inhomogeneities.  

The Pettitt test shares similarities with SNHT. Fig. 8 illustrates rainfall time series data that failed both Pettitt and SNHT in 
Jombang-Mojoagung. As a complementary measure, Pettitt is capable of identifying changes in the time series in the middle of the 
data. It seems that SNHT is able to identify drastic changes in the data at the beginning and end, as seen in the Ponorogo-Balong 
station where the break year is 2013. The large difference between the ranks of observations after the break year presents a notable 
issue. Distribution analysis suggests that fluctuations after the break year cannot be interpreted as typical climatic signals. Climatic 

 

a) 
b) 

 

a) b) 
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signals typically exhibit regular periodicity, which is absent in the dataset. Therefore, a combined approach of parametric and 
nonparametric rainfall testing may provide a more thorough assessment. 

 

 

Fig. 7 Station which failed SNHT solely. a) Ponorogo-Balong station comparison before and after break year, which did not pass the 
SNHT test but passed the other three tests; b) Sumenep-Ambunten 3-month moving average. Dashed box indicate break of the 

record. 

 

 

Fig. 8 Station which failed SNHT and Pettitt’s, change point detected at 2001. 

 
3.3.3 Buishand Range Test 

The Buishand test yields the highest positive results compared to other tests. Only 3 stations display homogeneity issues. Buishand 
does not detect non-homogeneity on its own. Non-homogeneous data detected by Buishand align with SNHT and von Neumann 
tests. For instance, the Sumenep-Ambunten station fails Buishand, SNHT, and Pettitt tests. Thus, solely relying on the Buishand test 
is inadequate for assessing rainfall data homogeneity. 
 

3.3.4 von Neumann Test 

Fig. 9 illustrates stations which failing the von Neumann test. This test is sensitive to changes at individual observation points because 

affected value of mean, xi − xi−1 and xi − X̅ of ith observation. If the value is greater than 2, it indicates homogeneous data. Solely 
relying on the von Neumann test regarding as insufficient for identifying inhomogeneity. For example, at the Bondowoso-
Glendengan, a single extreme point of 6000 mm of annual rainfall record caused the data fall into inhomogeneous. Despite failed into 
von Neumann test, the station passed Pettitt, SNHT, and Buishand. Previous simulations provide insight that von Neumann is 
sensitive to detecting slightly abrupt changes along the time series. It appears that von Neumann is capable of detecting anomalies 
of non-climatic signals. Climatic signals should exhibit repetitiveness, but in cases of von Neumann rejection, the extreme values tend 
to be individual. 

Based on the von Neumann test, it is evident that extreme data points should be excluded from the records. This conclusion 
arises from the observation that nearly all data rejected H0 where extreme high or low values found. Regarding the removal of 
'outliers', careful consideration is needed. The issue at the Bondowoso-Glendeng station stems from exceptionally high rainfall during 
the strong La Niña event in 2000, exceeding 6,000 mm/year. 

 

a) 
b) 
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Fig. 9b shows Bondowoso-Glendengan relative to the closest stations. Rainfall amount increasing on the same year, 2000, 
especially Bondowoso-PU reaching 4,000 mm/year. Somehow, between climatic or nonclimatic anomaly confusing in the case of 
absolute homogeneity. The matter arises from relative homogeneity appears because different topographic feature. In relation to La 
Niña event, rainfall in Java Island differ a lot between north and south coast (Qian et al. 2010). However, a careful consideration 
related to climatic or nonclimatic anomaly need to be performed.  

 
 
 
 
Table 4 
Homogeneity status of station based on annual, October-November-December, and January-February-March 

Num Station 
N 
(year) 

Annual OND JFM 
Status of 
Homogeneity 

1 Tuban Belikanget 39 Trusted Trusted  Doubtful Trusted 

2 Bojonegoro 42 Trusted Trusted  Trusted Trusted 

3 Baureno  42 Trusted Trusted  Trusted Trusted 

4 Bojonegoro-Sugihan 42 Doubtful Trusted  Doubtful Doubtful 

5 Lamongan Ngimbang 40 Trusted Trusted  Trusted Trusted 

6 Lamongan Jabung 41 Trusted Trusted  Trusted Trusted 

7 Lamongan Blawi 41 Trusted Trusted  Doubtful Trusted 

8 Gresik Tambakombo 40 Trusted Trusted  Trusted Trusted 

9 Gresik Lowayu 40 Trusted Trusted  Trusted Trusted 

10 Situbondo Wringinanom 30 Trusted Trusted  Trusted Trusted 

11 Madiun Caruban 41 Doubtful Trusted  Suspect Suspect 

12 Madiun Gemarang 41 Trusted Trusted  Doubtful Trusted 

13 Madiun Gombal 30 Trusted Trusted  Trusted Trusted 

14 Sidoarjo-Budug Bulus 37 Trusted Trusted  Trusted Trusted 

15 Surabaya Gubeng 42 Doubtful Doubtful Suspect Suspect 

16 Pasuruan P3GI 29 Doubtful Trusted  Trusted Doubtful 

17 Pasuruan Kasri 31 Trusted Trusted  Trusted Trusted 

18 Probolinggo Segaran 31 Trusted Trusted  Doubtful Trusted 

19 Probolinggo Ronggo Tali 30 Trusted Trusted  Trusted Trusted 

20 Probolinggo Adiboyo 31 Trusted Trusted  Trusted Trusted 

21 Problolinggo Lumbang 31 Trusted Trusted  Trusted Trusted 

22 Nganjuk Matokan 27 Trusted Trusted  Trusted Trusted 

23 Nganjuk Ngrambek 27 Trusted Trusted  Suspect Suspect 

24 Mojokerto Pacet 40 Trusted Trusted  Trusted Trusted 

25 Magetan Lambeyan 39 Trusted Trusted  Trusted Trusted 

26 Magetan Sarangan 40 Trusted Trusted  Suspect Suspect 

27 Jombang Mojoagung 30 Suspect Trusted  Trusted Suspect 

28 Ngawi Walikukun 38 Trusted Trusted  Doubtful Trusted 

29 Sumenep Ambunten 42 Reject Trusted  Suspect Rejected 

30 Sumenep Kebonagung 42 Suspect  Doubtful Doubtful Suspect 

31 Sampang Ketapang 42 Doubtful Trusted  Trusted Doubtful 

32 Pamekasan Pakong 36 Suspect Suspect Suspect Suspect 

33 Pamekasan Samiran 34 Reject Reject reject Rejected 

34 Bangkalan Sepulu 40 Suspect Doubtful Doubtful Suspect 

35 Bangkalan Tragah 42 Trusted Trusted  Trusted Trusted 

36 Banyuwangi Alasbulu 24 Doubtful Doubtful Trusted Doubtful 

37 Banyuwangi Dadapan 26 Trusted Trusted  Trusted Trusted 

38 Malang Dampit 21 Trusted Trusted  Trusted Trusted 



H.Mulyanti et al  J. Emerg. Sci. Eng. 2024, 2(2), e23 

| 12 

 

ISSN: 3026-0817(p)/3026-0183(e)/© 2024. The Author(s). Published by CBIORE 

Num Station 
N 
(year) 

Annual OND JFM 
Status of 
Homogeneity 

39 Trenggalek Dongko 31 Trusted Trusted  Trusted Trusted 

40 Blitar Gandusari 21 Trusted Trusted  Trusted Trusted 

41 Malang Jabung 21 Trusted Trusted  Trusted Trusted 

42 Blitar Kayumanis 21 Trusted Trusted  Trusted Trusted 

43 Lumajang Kedungwringin 16 Trusted Trusted  Trusted Trusted 

44 Banyuwangi Licin 26 Trusted Trusted  Trusted Trusted 

45 Blitar Lodoyo 21 Trusted Trusted  Trusted Trusted 

46 Trenggalek Munjungan 31 Trusted Trusted  Trusted Trusted 

47 Malang Pagak 21 Trusted Trusted  Trusted Trusted 

48 Tulungagung Pagerwojo 21 Trusted Trusted  Trusted Trusted 

49 Tulungagung Paingan 21 Trusted Trusted  Trusted Trusted 

50 Lumajang Pronojiwo 30 Trusted Trusted  Trusted Trusted 

51 Malang Sitiarjo 21 Trusted Trusted  Trusted Trusted 

52 Kota Malang Sukun 21 Trusted Trusted  Trusted Trusted 

53 Lumajang Wonokerto 40 Doubtful Doubtful Reject Rejected 

54 Bondowoso Glendengan 37 Doubtful Doubtful Doubtful Doubtful 

55 Bondowoso Kesemek 24 Trusted Trusted  Trusted Trusted 

56 Bondowoso Sentral PU 32 Trusted Trusted  Trusted Trusted 

57 Ponorogo Babadan 42 Trusted Trusted  Doubtful Trusted 

58 Ponorogo Balong 40 Doubtful Trusted  Trusted Doubtful 

59 Pacitan Nawangan 41 Trusted Trusted  Trusted Trusted 

60 Pacitan Pacitan 41 Trusted Trusted  Doubtful Trusted 

61 Pacitan Sudimoro 41 Trusted Trusted  Trusted Trusted 

62 Pacitan Tegalombo 40 Trusted Doubtful  Trusted Trusted 

 

 

Fig. 9 a) Rainfall pattern of Bondowoso-Glendengan which passed overall testing except von Neumann; b) Relative comparison 
Bondowoso-Glendengan with closest station. 

 
 

3.4 Homogeneity Status  

A summary of the annual and seasonal statistical testing results is presented in Table 4. The analysis covers stations with data 
spanning over 20 years. Three stations (5%) are rejected due to at least one of the three tests falling into the reject category, indicating 
failure to meet homogeneity criteria. Pamekasan-Samiran Station stands out as purely rejected, where all three tests indicate 
rejection. Among the total stations, 11% (7 stations) are marked as ‘suspect’, requiring further investigation. Another 11% (7 stations) 
are classified as ‘doubtful’, which means their data needs a closer look for possible improvements. Most of the stations, 73% or 45 
stations, are deemed as ‘trusted’. 

  

a) b) 
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Fig. 10 compare typical homogeneous and inhomogeneous series rainfall. Fig. 10a) depicts the homogeneous rainfall of 
Lamongan-Ngimbang, characterized by regular oscillations with no extreme values or abrupt changes. This station ia an excellent 
example of homogeneous data, making it ideal for assessing the homogeneity of nearby stations. However, in Fig. 10b, the rainfall 
series from Pamekasan-Samiran appears to be inhomogeneous without doubt. This series displays irregular oscillations with sharp 
shifts between maximum and minimum values, which are more noticeable in annual data compared to monthly data. Break years, 
identified in 1997 by Pettitt and 2009 by SNHT and Buishand, exhibit significant differences before and after the change points. The 
variation between the year of these break points underscores the non-homogeneous nature of the data. 

 

 

 

Fig. 10 a) Typical ‘trusted’ station which homogeneous both annual and seasonal; b) typical of ‘rejected’ statios which 
inhomogeneous both annual and seasonal 

 
 
 
3.5 Towards Comprehensive Homogeneity Test 
 

The von Neumann and Buishand tests should be supplemented with Pettitt and SNHT analyses to enhance data assessment. Both 
parametric and nonparametric should be conducted together to avoid false break detection. In absolute test, SNHT and Pettitt 
analyses complement each other, mutually confirming breakpoint occurrences. For datasets with high variability, including daily 
rainfall or monthly rainfall, it may be adequate to use rank based data, like Pettitt’s (Aguilar et al. 2003).  

Regarding to SNHT and similar methodologies, the test should exclusively be employed on a standardized difference series 
(Aguilar et al. 2003). Detection of inhomogeneities in beginning or the end should be confirmed by metadata (Toreti et al. 2011). This 
approach can be implemented using either multiple reference series with high correlation (relative homogeneity) (Aguilar et al. 2003) 
or singular reference series (Alexandersson and Moberg 1997; Peterson and Easterling 1994; Toreti et al. 2011). One strategy to 
address this challenge is to utilize series from diverse meteorological networks with similar rainfall characteristics to enhance the 
likelihood of identifying breaks that affect the entire network. 

Both absolute and relative homogeneity tests have disadvantages. Relying solely on data from individual weather stations presents 
challenges in distinguishing between climatic and non-climatic influences. Peterson et al. (1998) emphasize the necessity of 
comprehensive metadata support from station history records to accurately assess detected breakpoints (Alexandersson and Moberg 
1997; Toreti et al. 2011). Relative methodologies are employed to isolate non-climatic influences, assuming uniform climatic patterns 
within a geographic area. However, complications arise when climate data series show inhomogeneities due to concurrent changes 
in the observational network, potentially reducing the sensitivity of relative tests. 

As mentioned by scholar, homogeneity testing should consider metadata comparison (Aguilar et al. 2003) as demonstrated in 
Turkey (Arikan and Kahya 2019). Moreover, homogeneity testing needs to evaluate data trends of reference stations (Ay 2020). An 
autocorrelation of single series could be useful for breakpoint detection, like Pettitt’s, SNHT, Buishand, and von Neumann (Beaulieu 
et al. 2012). However, with limited information about individual stations, drawing conclusions can be challenging. For results 
categorized as 'doubtful,' it's essential to identify outliers and anomalous data distributions. The study underscores the significance 
of similar rainfall zones to streamline the selection of reference stations for homogeneity testing, particularly for stations classified as 
'doubtful' or 'suspected'. 
 

6. Conclusion 

Among the time series, observations from October to December exhibit better homogeneity compared to the primary rainy season. 
However, the rainfall datasets during the primary rainy season demonstrate the poorest homogeneity. Through annual and seasonal 
homogeneity tests conducted on 67 rainfall stations, 5 stations are removed due to insufficient data length, 5% stations are ‘rejected’, 
while 11% are categorized as 'suspect' and another 11% as 'doubtful'. The majority, 73%, are deemed 'trusted', totaling 45 stations 
suitable for metadata comparison. Additionally, 7 stations classified as 'doubtful' can still be considered useful for analysis. However, 
the remaining 10 stations require careful consideration for future water management. Typical break year of climatic record occurring 

  

a) b) 
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during extreme El Niño in 1997 or extreme La Niña in 2000. Pettitt's test yields better results for anticipating climatic anomalies. It is 
crucial to first remove any outliers from the datasets, conduct both parametric and nonparametric tests, and compare with 
surrounding rainfall stations before homogeneity testing. Comparing with trusted reference stations is beneficial for stations 
categorized as 'doubtful' or 'suspect'. These findings underscore the importance of assessing reference stations within similar rainfall 
zones.  
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