An insight from homogeneity testing of long-term rainfall datasets over East Java, Indonesia

Authors

  • Heri Mulyanti Doctoral Program of Environmental Science, Universitas Diponegoro, 50241, Semarang, Indonesia
  • Istadi Department of Chemical Engineering, Universitas Diponegoro, 50275, Semarang, Indonesia
  • Rahmat Gernowo Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, 50275, Semarang, Indonesia

DOI:

https://doi.org/10.61435/jese.2024.e23

Abstract

Robust, reliable, and trustworthy ground observation datasets are the preliminary requirement for assessing the impact of climate change over regions. Principal testing to assess the quality of ground observation rely on the missing data and homogeneity result. The study used 40 years of monthly rainfall documented from different topographical features in the monsoonal region of East Java, Indonesia. The test included annual rainfall, early rainy season (October-November-December), and primary rain season (January-February-March). The homogeneity of rainfall determined by absolute technique: Pettitt’s test, the Standard Normal Homogeneity Test, the Buishand Rank Test, and the von Neumann Ratio. Among the time series, October-November-December observation results in better homogeneity. However, the rainfall datasets during primary rainy season showed the worst homogeneity. By performing annual and seasonal homogeneity test from 67 rainfall stations: 5 stations out of data length required, 5% stations ‘rejected’, 11% ‘suspect’, 11% ‘doubtful’, and 73% were ‘trusted’. Therefore, a total of 45 stations can be used as metadata for relative comparison and 7 stations can be considered to be useful for analysis despite ‘doubtful’. The remaining 10 stations need careful consideration to be used for future water management.  Change point detected particularly between the year of 1997 through 2000. Pettitt’s test has outstanding results in the case of extreme climatic anomaly, but less sensitive of continuous abrupt change. The von Neumann test could detect abnormal data, but was not suitable for datasets containing few extreme values. The insights from homogeneity testing were: a) it is important to remove any outliers in the datasets before conducting homogeneity testing, b) both parametric and nonparametric homogeneity tests should be performed, and c) comparisons should be made with surrounding rainfall stations. Comparison with trusted long-term rainfall data is valuable for stations labeled as ‘doubtful’ or ‘suspect’ to mitigate false detections in individual homogeneity tests. The identified ‘useful’ rainfall data can then serve as reference stations for relative homogeneity tests. These findings suggest that reference stations should be assessed within similar rainfall zones.  

Keywords:

homogeneity, rainfall, East Java, reference stations

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., & Wieringa, J. (2003). Guidance on Metadata and Homogenization. Geneva, Switzerland: World Meteorological Organization.

Akinsanola, A. A., & Ogunjobi, K. O. (2017). Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical and Applied Climatology, 128(1), 275–289. https://doi.org/10.1007/s00704-015-1701-x

Aldrian, E., & Djamil, Y. S. (2008). Spatio-temporal climatic change of rainfall in East Java Indonesia. International Journal of Climatology, 28, 435–448. https://doi.org/10.1002/joc.1543

Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6(6), 661–675. https://doi.org/10.1002/joc.3370060607

Alexandersson, H., & Moberg, A. (1997). Homogenization of Swedish Temperature Data. Part I: Homogeneity Test for Linear Trends. International Journal of Climatology, 17(1), 25–34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J

Anripa, N., Kumar, A., Maharana, P., & Dimri, A. P. (2023). Climate change over Indonesia and its impact on nutmeg production: An analysis under high-resolution CORDEX-CORE regional simulation framework. International Journal of Climatology, 43(10), 4472–4490. https://doi.org/10.1002/joc.8098

Arikan, B. B., & Kahya, E. (2019). Homogeneity revisited: analysis of updated precipitation series in Turkey. Theoretical and Applied Climatology, 135(1), 211–220. https://doi.org/10.1007/s00704-018-2368-x

As-syakur, Abd. R., Osawa, T., Miura, F., Nuarsa, I. W., Ekayanti, N. W., Dharma, I. G. B. S., et al. (2016). Maritime Continent Rainfall Variability during the TRMM Era: The Role of Monsoon, Topography and El Nino Modoki. Dynamics of Atmospheres and Oceans. https://doi.org/10.1016/j.dynatmoce.2016.05.004

Ay, M. (2020). Trend and homogeneity analysis in temperature and rainfall series in western Black Sea region, Turkey. Theoretical and Applied Climatology, 139(3), 837–848. https://doi.org/10.1007/s00704-019-03066-6

Beaulieu, C., Chen, J., & Sarmiento, J. L. (2012). Change-point analysis as a tool to detect abrupt climate variations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), 1228–1249. https://doi.org/10.1098/rsta.2011.0383

Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1), 11–27. https://doi.org/10.1016/0022-1694(82)90066-X

Chen, C., Sahany, S., Moise, A. F., Chua, X. R., Hassim, M. E., Lim, G., & Prasanna, V. (2023). ENSO–Rainfall Teleconnection over the Maritime Continent Enhances and Shifts Eastward under Warming. Journal of Climate, 36(14), 4635–4663. https://doi.org/10.1175/JCLI-D-23-0036.1

D’Arrigo, R., Wilson, R., Palmer, J., Krusic, P., Curtis, A., Sakulich, J., et al. (2006). Monsoon drought over Java, Indonesia, during the past two centuries. Geophysical Research Letters, 33(4), L04709. https://doi.org/10.1029/2005GL025465

Gu, L., Chen, J., Yin, J., Xu, C., & Zhou, J. (2020). Responses of Precipitation and Runoff to Climate Warming and Implications for Future Drought Changes in China. Earth’s Future, 8(10), e2020EF001718. https://doi.org/10.1029/2020EF001718

Hadi, S. J., Hadi, A. J., Ismail, K. S., & Tombul, M. (2019). Homogeneity and Trend Analysis of Rainfall and Streamflow of Seyhan Basin (Turkey). In H. I. Chaminé, M. Barbieri, O. Kisi, M. Chen, & B. J. Merkel (Eds.), Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources (pp. 17–19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01572-5_4

Hawkins, D. M. (1977). Testing a Sequence of Observations for a Shift in Location. Journal of the American Statistical Association. https://www.tandfonline.com/doi/abs/10.1080/01621459.1977.10479935. Accessed 6 May 2024

Intergovernmental Panel On Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896

Jarušková, D. (1996). Change-Point Detection in Meteorological Measurement. Monthly Weather Review, 124(7), 1535–1543. https://doi.org/10.1175/1520-0493(1996)124<1535:CPDIMM>2.0.CO;2

Krzywinski, M., & Altman, N. (2014). Nonparametric tests. Nature Methods, 11(5), 467–468. https://doi.org/10.1038/nmeth.2937

Mulyanti, H., Istadi, I., & Gernowo. (2023). Assessing Vulnerability of Agriculture to Drought in East Java, Indonesia: Application of GIS and AHP | Mulyanti | Geoplanning: Journal of Geomatics and Planning. Geoplanning: Journal of Geomatics and Planning, 10(1), 55–72.

Pandžić, K., Kobold, M., Oskoruš, D., Biondić, B., Biondić, R., Bonacci, O., et al. (2020). Standard normal homogeneity test as a tool to detect change points in climate-related river discharge variation: case study of the Kupa River Basin. Hydrological Sciences Journal, 65(2), 227–241. https://doi.org/10.1080/02626667.2019.1686507

Peterson, T. C., & Easterling, D. R. (1994). Creation of homogeneous composite climatological reference series. International Journal of Climatology, 14(6), 671–679. https://doi.org/10.1002/joc.3370140606

Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., et al. (1998). Homogeneity adjustments ofin situ atmospheric climate data: a review. International Journal of Climatology, 18(13), 1493–1517. https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T

Pettitt, A. N. (1979). A non-parametric approach to the change point problem. Journal of Applied Statistics, 28, 126–135.

Qian, J.-H., Robertson, A. W., & Moron, V. (2010). Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. Journal of the Atmospheric Sciences, 67(11), 3509–3524. https://doi.org/10.1175/2010JAS3348.1

Rummukainen, M. (1997). Methods for statistical downscaling of GCM simulations. SMHI. https://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-2602. Accessed 7 May 2024

Rummukainen, M. (2016). Added value in regional climate modeling. WIREs Climate Change, 7(1), 145–159. https://doi.org/10.1002/wcc.378

Tanaka, M. (1994). The Onset and Retreat Dates of the Austral Summer Monsoon over Indonesia, Australia and New Guinea. Journal of the Meteorological Society of Japan, 72(2), 255–267.

Toreti, A., Kuglitsch, F. G., Xoplaki, E., Della-Marta, P. M., Aguilar, E., Prohom, M., & Luterbacher, J. (2011). A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series. International Journal of Climatology, 31(4), 630–632. https://doi.org/10.1002/joc.2088

Tsybakov, A. B. (2009). Nonparametric estimators. In Introduction to Nonparametric Estimation (pp. 1–76). Springer. https://link.springer.com/book/10.1007/b13794. Accessed 9 May 2024

Wahab, M. I., Sudibyakto, S., Gunadi, S., & Suratman, W. S. (2009). Change in Spatial and Temporal Characteristics of Rainfall in East Java Province in Relation to Global Climate Change Perubahan Karakteristik Curah Hujan Menurut Ruang Dan Waktu Di Provinsi Jawa Timur Dalam Kaitannya Dengan Perubahan Iklim ... Agromet, 23(1), 245931.

Whitley, E., & Ball, J. (2002). Statistics review 6: Nonparametric methods. Critical Care, 6(6), 509. https://doi.org/10.1186/cc1820

Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23(6), 679–692. https://doi.org/10.1002/joc.906

Downloads

Published

2024-05-24

How to Cite

Mulyanti, H., Istadi, & Gernowo, R. (2024). An insight from homogeneity testing of long-term rainfall datasets over East Java, Indonesia . Journal of Emerging Science and Engineering, 2(2), e23. https://doi.org/10.61435/jese.2024.e23

Issue

Section

Articles