From pond to polymer: A concise review on algae-derived plastics
DOI:
https://doi.org/10.61435/jese.2026.e40Keywords:
Algae-derived plastics, Sustainable bioplastics, Circular economy, Plastic pollution mitigationAbstract
Algae-derived plastics signify a revolutionary advancement in the pursuit of sustainable materials, providing a renewable and environmentally benign substitute for conventional petroleum-based polymers. This review explores the most recent advancements in algae cultivation, polymerization methodologies, and synthetic biology that have elevated algae-based bioplastics to a position of prominence. It emphasizes the distinctive characteristics of algal biopolymers, their capacity to sequester carbon, and their various applications, encompassing packaging and 3D printing. Nonetheless, the pathway from aquatic environments to polymeric substances is laden with obstacles, including elevated production costs, challenges related to scalability, and regulatory impediments. Through the analysis of case studies, market dynamics, and burgeoning research, this paper highlights the pivotal importance of algae-derived plastics in fulfilling circular economy objectives and mitigating plastic pollution. The review culminates with an appeal for international collaboration, policy advocacy, and sustained investment in algae bioplastics to realize their complete potential as a fundamental element of sustainable development.
References
Abdulkadhim, M. K., & Habeeb, S. A. (2022). The Possibility of Producing Uniform Nanofibers from Blends of Natural Biopolymers. Materials Performance and Characterization, 11(1), 313–323. https://doi.org/10.1520/MPC20220045
Abdul-Latif, N. I. S., Ong, M. Y., Nomanbhay, S., Salman, B., & Show, P. L. (2020). Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA). Bioengineered, 11(1), 154–164. https://doi.org/10.1080/21655979.2020.1718471
Adetunji, A. I., & Erasmus, M. (2024). Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers, 16(10), Article 10. https://doi.org/10.3390/polym16101322
Allnutt, F. C. T. (2019). Promising Future Products from Microalgae for Commercial Applications. In Sustainable Downstream Processing of Microalgae for Industrial Application. CRC Press.
Andanje, M. N., Mwangi, J. W., Mose, B. R., & Carrara, S. (2023). Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review. Polymers, 15(10), Article 10. https://doi.org/10.3390/polym15102355
Anto, S., Mukherjee, S. S., Muthappa, R., Mathimani, T., Deviram, G., Kumar, S. S., Verma, T. N., & Pugazhendhi, A. (2020). Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere, 242. https://doi.org/10.1016/j.chemosphere.2019.125079
Araújo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I. C., Bruhn, A., Fluch, S., Garcia Tasende, M., Ghaderiardakani, F., Ilmjärv, T., Laurans, M., Mac Monagail, M., Mangini, S., Peteiro, C., Rebours, C., Stefansson, T., & Ullmann, J. (2021). Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.626389
Aswathi Mohan, A., Robert Antony, A., Greeshma, K., Yun, J. H., Ramanan, R., & Kim, H. S. (2022). Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. In Bioresource Technology (Vol. 344). https://doi.org/10.1016/j.biortech.2021.126397
Behera, B., Selvam S, M., & Paramasivan, B. (2022). Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresource Technology, 351, 127038. https://doi.org/10.1016/j.biortech.2022.127038
Biernat, K. (2022). Biorefineries: Selected Processes. BoD – Books on Demand.
Bin Abu Sofian, A. D. A., Lim, H. R., Manickam, S., Ang, W. L., & Show, P. L. (2024). Towards a Sustainable Circular Economy: Algae-Based Bioplastics and the Role of Internet-of-Things and Machine Learning. ChemBioEng Reviews, 11(1), 39–59. https://doi.org/10.1002/cben.202300028
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
Cheah, W. Y., Er, A. C., Aiyub, K., Mohd Yasin, N. H., Ngan, S. L., Chew, K. W., Khoo, K. S., Ling, T. C., Juan, J. C., Ma, Z., & Show, P. L. (2023). Current status and perspectives of algae-based bioplastics: A reviewed potential for sustainability. Algal Research, 71. https://doi.org/10.1016/j.algal.2023.103078
Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment. In Earth Systems and Environment (Vol. 5, Issue 2, pp. 231–251). https://doi.org/10.1007/s41748-021-00208-7
Devadas, V. V., Khoo, K. S., Chia, W. Y., Chew, K. W., Munawaroh, H. S. H., Lam, M.-K., Lim, J.-W., Ho, Y.-C., Lee, K. T., & Show, P. L. (2021). Algae biopolymer towards sustainable circular economy. Bioresource Technology, 325, 124702.
https://doi.org/10.1016/j.biortech.2021.124702
Dhokane, D., Shaikh, A., Yadav, A., Giri, N., Bandyopadhyay, A., Dasgupta, S., & Bhadra, B. (2023). CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1267826
Dornburg, V., Hermann, B. G., & Patel, M. K. (2008). Scenario Projections for Future Market Potentials of Biobased Bulk Chemicals. Environmental Science & Technology, 42(7), 2261–2267. https://doi.org/10.1021/es0709167
dos Santos, G. S., de Souza, T. L., Teixeira, T. R., Brandão, J. P. C., Santana, K. A., Barreto, L. H. S., Cunha, S. de S., dos Santos, D. C. M. B., Caffrey, C. R., Pereira, N. S., & de Freitas Santos Júnior, A. (2023). Seaweeds and Corals from the Brazilian Coast: Review on Biotechnological Potential and Environmental Aspects. Molecules, 28(11), Article 11. https://doi.org/10.3390/molecules28114285
Fabris, M., Abbriano, R. M., Pernice, M., Sutherland, D. L., Commault, A. S., Hall, C. C., Labeeuw, L., McCauley, J. I., Kuzhiuparambil, U., Ray, P., Kahlke, T., & Ralph, P. J. (2020). Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. In Frontiers in Plant Science (Vol. 11). https://doi.org/10.3389/fpls.2020.00279
Jiao, H., Ali, S. S., Alsharbaty, M. H. M., Elsamahy, T., Abdelkarim, E., Schagerl, M., Al-Tohamy, R., & Sun, J. (2024). A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. Ecotoxicology and Environmental Safety, 271, 115942. https://doi.org/10.1016/j.ecoenv.2024.115942
Kalita, N. K., Damare, N. A., Hazarika, D., Bhagabati, P., Kalamdhad, A., & Katiyar, V. (2021). Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environmental Challenges, 3, 100067. https://doi.org/10.1016/j.envc.2021.100067
Kapoor, D. U., Kukkar, M. R., Gaur, M., Prajapati, B. G., Suttiruengwong, S., & Sriamornsak, P. (2024). Algae as third-generation materials: Exploring the emerging role in pharmaceutical applications. Materials Today Sustainability, 27, 100935. https://doi.org/10.1016/j.mtsust.2024.100935
Khyalia, P., Gahlawat, A., Jugiani, H., Kaur, M., Laura, J. S., & Nandal, M. (2022). Review on the use of Microalgae Biomass for Bioplastics Synthesis: A Sustainable and Green approach to control Plastic Pollution. In Pollution (Vol. 8, Issue 3, pp. 844–859). https://doi.org/10.22059/POLL.2022.334756.1273
Kiessling, T., Hinzmann, M., Mederake, L., Dittmann, S., Brennecke, D., Böhm-Beck, M., Knickmeier, K., & Thiel, M. (2023). What potential does the EU Single-Use Plastics Directive have for reducing plastic pollution at coastlines and riversides? An evaluation based on citizen science data. Waste Management, 164, 106–118. https://doi.org/10.1016/j.wasman.2023.03.042
Kong, U., Mohammad Rawi, N. F., & Tay, G. S. (2023). The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers, 15(10), Article 10. https://doi.org/10.3390/polym15102399
Leong, Y. K., & Chang, J.-S. (2022). Chapter 6—Bioprocessing for production and applications of bioplastics from algae. In H. Ngo, W. Guo, A. Pandey, J.-S. Chang, & D.-J. Lee (Eds.), Biomass, Biofuels, and Biochemicals (pp. 105–132). Elsevier. https://doi.org/10.1016/B978-0-323-96142-4.00008-7
Little, T. M. (2014, October 7). Algae-Based Bioplastic: Algix Plan to Stop Plastic Waste. Business Alabama Magazine. https://businessalabama.com/algae-based-bioplastic/
Liu, X., & Hong, Y. (2021). Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: A Brief Review. Current Pollution Reports, 7(2), 227–245. https://doi.org/10.1007/s40726-021-00184-6
Luo, Y., Le-Clech, P., & Henderson, R. K. (2020). Characterisation of microalgae-based monocultures and mixed cultures for biomass production and wastewater treatment. Algal Research, 49, 101963. https://doi.org/10.1016/j.algal.2020.101963
Mahmood, T., Hussain, N., Shahbaz, A., Mulla, S. I., Iqbal, H. M. N., & Bilal, M. (2023). Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 46(8), 1077–1097. https://doi.org/10.1007/s00449-022-02796-8
Mal, N., Satpati, G. G., Raghunathan, S., & Davoodbasha, M. A. (2022a). Current strategies on algae-based biopolymer production and scale-up. Chemosphere, 289. https://doi.org/10.1016/j.chemosphere.2021.133178
Mal, N., Satpati, G., Raghunathan, S., & Davoodbasha, M. (2022b). Current strategies on algae-based biopolymer production and scale-up. Chemosphere, 289, 133178. https://doi.org/10.1016/j.chemosphere.2021.133178
Malkar, R., Kagale, S., Chavan, S., Tiwari, M., & Patil, P. (2023). Applications of Bioplastics in Sports and Leisure. In Handbook of Bioplastics and Biocomposites Engineering Applications (pp. 299–315). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119160182.ch15
Mehta, N., Cunningham, E., Roy, D., Cathcart, A., Dempster, M., Berry, E., & Smyth, B. M. (2021). Exploring perceptions of environmental professionals, plastic processors, students and consumers of bio-based plastics: Informing the development of the sector. Sustainable Production and Consumption, 26, 574–587. https://doi.org/10.1016/j.spc.2020.12.015
Mirzaei, A., Esmkhani, M., Zallaghi, M., Nezafat, Z., & Javanshir, S. (2023). Biomedical and Environmental Applications of Carrageenan-Based Hydrogels: A Review. In Journal of Polymers and the Environment (Vol. 31, Issue 5, pp. 1679–1705). https://doi.org/10.1007/s10924-022-02726-5
Olabi, A. G., Shehata, N., Sayed, E. T., Rodriguez, C., Anyanwu, R. C., Russell, C., & Abdelkareem, M. A. (2023). Role of microalgae in achieving sustainable development goals and circular economy. Science of The Total Environment, 854, 158689. https://doi.org/10.1016/j.scitotenv.2022.158689
Penloglou, G., Pavlou, A., & Kiparissides, C. (2024). Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview. Processes, 12(6), Article 6. https://doi.org/10.3390/pr12061104
Phillip, A. (2024). Bioplastics from Waste Biomass: Paving the Way for a Sustainable Future. International Journal for Research in Applied Science and Engineering Technology, 12(9), 518–533. https://doi.org/10.22214/ijraset.2024.64225
Phillip, A., & Chauhan, T. (2024). Innovative biotechnological approaches for plastic degradation: A pathway to sustainable waste management. International Journal of Science and Research Archive, 13(1), 2228–2243. https://doi.org/10.30574/ijsra.2024.13.1.1861
Sharma, A., Sarkar, P., Chhabra, M., Kumar, A., Kumar, A., Kothadia, H., & Mallick, A. (2023). Carbon capture from petrol-engine flue gas: Reviving algae-based sequestration with integrated microbial fuel cells. Chemical Engineering Journal, 476. https://doi.org/10.1016/j.cej.2023.146578
Srimongkol, P., Sangtanoo, P., Songserm, P., Watsuntorn, W., & Karnchanatat, A. (2022). Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.904046
Srinithi, R., Sangavi, P., Nachammai, K. T., Gowtham Kumar, S., & Langeswaran, K. (2023). Chapter 22—Perspective of algae materials 2.0. In K. Arunkumar, A. Arun, R. Raja, & R. Palaniappan (Eds.), Algae Materials (pp. 383–397). Academic Press. https://doi.org/10.1016/B978-0-443-18816-9.00009-5
Tennakoon, P., Chandika, P., Yi, M., & Jung, W. K. (2023). Marine-derived biopolymers as potential bioplastics, an eco-friendly alternative. In iScience (Vol. 26, Issue 4). https://doi.org/10.1016/j.isci.2023.106404
Wang, H., Cao, Z., Yao, L., Feng, T., Song, S., & Sun, M. (2023). Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. In Foods (Vol. 12, Issue 8). https://doi.org/10.3390/foods12081622
Yap, X. Y., Gew, L. T., Khalid, M., & Yow, Y. Y. (2023). Algae-Based Bioplastic for Packaging: A Decade of Development and Challenges (2010–2020). In Journal of Polymers and the Environment (Vol. 31, Issue 3, pp. 833–851). https://doi.org/10.1007/s10924-022-02620-0
Zeng, X., Ogunseitan, O. A., Nakamura, S., Suh, S., Kral, U., Li, J., & Geng, Y. (2022). Reshaping global policies for circular economy. Circular Economy, 1(1), 100003. https://doi.org/10.1016/j.cec.2022.100003
Downloads
Submitted
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Akash Phillip, Tushar Chauhan, Shravan Kumar, Bagepalli Srinivas Ashok Kumar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Emerging Science and Engineering published under the terms of a Creative Commons Attribution 4.0 International License / CC BY 4.0 This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivative works of this material for any purpose, including commercial purposes, so long as they include credit to the Authors of the original work.











