Global research trends and hotspots in solar power tower technology: A bibliometric review
DOI:
https://doi.org/10.61435/jese.2025.e47Keywords:
Renewable energy, Bibliometric analysis, Solar power tower (SPT), Concentrated solar power (CSP)Abstract
Solar Power Towers (SPTs), as a forefront division of Concentrated Solar Power (CSP), have become a promising option for green electricity generation. This paper presents a bibliometric study of global research output in SPTs using data retrieved from the Scopus and Web of Science databases for the period between 2015 and 2024. The 860 documents dataset was mapped using bibliometric tools like VOSviewer and Bibliometrix to examine publication trends, prominent authors, leading institutions, high-output countries, and hot topics of research. The findings illustrate a picture of tremendous growth in publications since 2008 with China, the United States, and Spain as the leading contributors. Heliostat field design, thermal energy storage, receiver efficiency, and system-level optimization are some of the leading research themes. Keyword co-occurrence and co-authorship analysis reveal thematic clustering and changing collaboration patterns, with increasing yet still modest international collaboration. This review presents the current shape and intellectual structure of SPT research, giving a glimpse of its evolutionary trajectory. The findings can help researchers, practitioners, and policymakers identify knowledge gaps and plan future research agendas in the field of solar thermal technologies.
References
Achkari, O., & El Fadar, A. (2020). Latest developments on TES and CSP technologies – Energy and environmental issues, applications and research trends. Applied Thermal Engineering, 167. https://doi.org/10.1016/j.applthermaleng.2019.114806
Aghazadeh Ardebili, A., Martella, C., Longo, A., Rucco, C., Izzi, F., & Ficarella, A. (2025). IoT-Driven Resilience Monitoring: Case Study of a Cyber-Physical System. Applied Sciences 2025, Vol. 15, Page 2092, 15(4), 2092. https://doi.org/10.3390/APP15042092
Ait Lahoussine Ouali, H., Khouya, A., & Alami Merrouni, A. (2022). Numerical investigation of high concentrated photovoltaic (HCPV) plants in MENA region: Techno-Economic assessment, parametric study and sensitivity analysis. Sustainable Energy Technologies and Assessments, 53, 102510. https://doi.org/10.1016/j.seta.2022.102510
Alfailakawi, M., Alzahrani, K., Ingham, D., Hughes, K., Ma, L., & Pourkashanian, M. (2023). Multi-Objective Optimization of Solar Power Tower Hybridization with Gas Turbine and Thermal Energy Storage Back Up. Proceedings - International Conference on Energy Research and Development, ICERD, 2023(November).
Alfailakawi, M. S., Michailos, S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2024). Enhancing the performance of an aerosols-affected solar power tower in arid regions: A case study of wind turbines hybridization. Results in Engineering, 24. https://doi.org/10.1016/j.rineng.2024.102968
AlKassem, A. (2021). A performance evaluation of an integrated solar combined cycle power plant with solar tower in Saudi Arabia. Renewable Energy Focus , 39, 123–138. https://doi.org/10.1016/j.ref.2021.08.001
Al-Sulaiman, F. A., & Atif, M. (2015). Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy, 82, 61–71. https://doi.org/10.1016/J.ENERGY.2014.12.070
Altan, H., Chaer, I., Ozarisoy, B., Ba, L., Tangour, F., Abbassi, I. El, & Absi, R. (2025). Analysis of Digital Twin Applications in Energy Efficiency: A Systematic Review. Sustainability 2025, Vol. 17, Page 3560, 17(8), 3560. https://doi.org/10.3390/SU17083560
André, L., Abanades, S., & Flamant, G. (2016). Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renewable and Sustainable Energy Reviews, 64, 703–715. https://doi.org/10.1016/j.rser.2016.06.043
Andreozzi, A., Buonomo, B., Ercole, D., & Manca, O. (2019). Parallel triangular channel system for sensible heat thermal energy storages with external heat losses. ASME 2019 Heat Transfer Summer Conference, HT 2019, Collocated with the ASME 2019 13th International Conference on Energy Sustainability. https://doi.org/10.1115/HT2019-3607
Arévalo, R., & Abánades, A. (2023). THERMAL EVALUATION OF A SOLAR POWER TOWER EXTERNAL RECEIVER WITH LIQUID METAL AS HEAT TRANSFER FLUID IN NORTHERN CHILE. Heat Transfer Research, 54(2), 57–72. https://doi.org/10.1615/HeatTransRes.2022043516
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/J.JOI.2017.08.007
Arruda, H., Silva, E. R., Lessa, M., Proença, D., & Bartholo, R. (2022). VOSviewer and Bibliometrix. Journal of the Medical Library Association : JMLA, 110(3), 392. https://doi.org/10.5195/JMLA.2022.1434
Aslam, Z., Gilani, S. I. U. H., Mohamad, T. I., Muhammad, M., & Alao, K. T. (2025a). Technological frontiers and optimization in solar power towers: innovations in thermal energy storage, receivers, and heliostat systems. Clean Technologies and Environmental Policy 2025, 1–29. https://doi.org/10.1007/S10098-025-03337-Z
Aslam, Z., Gilani, S. I. U.-H., Mohamad, T. I., Muhammad, M., & Alao, K. T. (2025b). Optical performance analysis of small-scale heliostats field layout of solar power tower system in Malaysia. Energy Nexus, 100489. https://doi.org/10.1016/J.NEXUS.2025.100489
Awouda, A., Traini, E., Bruno, G., & Chiabert, P. (2024). IoT-Based Framework for Digital Twins in the Industry 5.0 Era. Sensors 2024, Vol. 24, Page 594, 24(2), 594. https://doi.org/10.3390/S24020594
Bader, R., & Lipiński, W. (2017). Solar thermal processing. In Advances in Concentrating Solar Thermal Research and Technology. https://doi.org/10.1016/B978-0-08-100516-3.00018-6
Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/QSS_A_00018
Blanco, M. J., & Miller, S. (2017). Introduction to concentrating solar thermal (CST) technologies. In Advances in Concentrating Solar Thermal Research and Technology. https://doi.org/10.1016/B978-0-08-100516-3.00001-0
Bonanos, A. M., Georgiou, M. C., Stokos, K. G., & Papanicolas, C. N. (2019). Engineering aspects and thermal performance of molten salt transfer lines in solar power applications. Applied Thermal Engineering, 154, 294–301. https://doi.org/10.1016/j.applthermaleng.2019.03.091
Bonk, A., Braun, M., & Bauer, T. (2022). Phase diagram, thermodynamic properties and long-term isothermal stability of quaternary molten nitrate salts for thermal energy storage. Solar Energy, 231, 1061–1071. https://doi.org/10.1016/j.solener.2021.12.020
Boretti, A. (2025). Perspective on Dual-Tower Concentrated Solar Power Plants. Applied Research, 4(1). https://doi.org/10.1002/appl.202400207
Buck, R., & Schwarzbözl, P. (2018). Solar Tower Systems. In Comprehensive Energy Systems (Vol. 4, pp. 692–732). Elsevier. https://doi.org/10.1016/B978-0-12-809597-3.00428-4
Calderón, A., Palacios, A., Barreneche, C., Segarra, M., Prieto, C., Rodriguez-Sanchez, A., & Fernández, A. I. (2018). High temperature systems using solid particles as TES and HTF material: A review. Applied Energy, 213, 100–111. https://doi.org/10.1016/j.apenergy.2017.12.107
Caraballo, A., Galán-Casado, S., Caballero, Á., & Serena, S. (2021). Molten salts for sensible thermal energy storage: A review and an energy performance analysis. Energies, 14(4). https://doi.org/10.3390/en14041197
Chen, D., Colas, J., Mercier, F., Boichot, R., Charpentier, L., Escape, C., Balat-Pichelin, M., & Pons, M. (2019). High temperature properties of AlN coatings deposited by chemical vapor deposition for solar central receivers. Surface and Coatings Technology, 377. https://doi.org/10.1016/j.surfcoat.2019.07.083
Chen, Y., Wang, D., Zou, C., Gao, W., & Zhang, Y. (2022). Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions. Energy, 246. https://doi.org/10.1016/j.energy.2022.123344
Chirici, G. (2012). Assessing the scientific productivity of Italian forest researchers using the Web of Science, SCOPUS and SCIMAGO databases. IForest - Biogeosciences and Forestry, 5(3), 101. https://doi.org/10.3832/IFOR0613-005
Chung, K. M., Zhang, Y., Zeng, J., Haddad, F., Adapa, S., Feng, T., Li, P., & Chen, R. (2023). In-situ thermophysical measurement of flowing molten chloride salt using modulated photothermal radiometry. Solar Energy, 265. https://doi.org/10.1016/j.solener.2023.112124
Colas, J., Charpentier, L., & Balat-Pichelin, M. (2020). Oxidation in Air at 1400 K and Optical Properties of Inconel 625, FeCrAlloy and Kanthal Super ER. Oxidation of Metals, 93(3–4), 355–370. https://doi.org/10.1007/s11085-020-09959-6
Collado, F. J., & Guallar, J. (2013). A review of optimized design layouts for solar power tower plants with campo code. Renewable and Sustainable Energy Reviews, 20, 142–154. https://doi.org/10.1016/j.rser.2012.11.076
Conroy, T., Collins, M. N., Fisher, J., & Grimes, R. (2018). Levelized cost of electricity evaluation of liquid sodium receiver designs through a thermal performance, mechanical reliability, and pressure drop analysis. Solar Energy, 166, 472–485. https://doi.org/10.1016/J.SOLENER.2018.03.003
Crespo, A., Barreneche, C., Ibarra, M., & Platzer, W. (2019). Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review. Solar Energy, 192, 3–34. https://doi.org/10.1016/j.solener.2018.06.101
D’Auria, M., Grena, R., Lanchi, M., & Liberatore, R. (2024). Heat Supply to Industrial Processes via Molten Salt Solar Concentrators. Energies, 17(18). https://doi.org/10.3390/en17184541
Devaradjane, R., & Shin, D. (2012). Enhanced heat capacity of molten salt nano - Materials for concentrated solar power application. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 8, 269–273. https://doi.org/10.1115/IMECE2012-87737
Ding, W., Bonk, A., & Bauer, T. (2018). Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Frontiers of Chemical Science and Engineering, 12(3), 564–576. https://doi.org/10.1007/s11705-018-1720-0
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/J.JBUSRES.2021.04.070
Elfeky, K. E., Mohammed, A. G., & Wang, Q. (2021). Thermo-Economic Evaluation of Thermocline Thermal Energy Storage Tank for CSP Plants. Chemical Engineering Transactions, 88, 241–246. https://doi.org/10.3303/CET2188040
Fang, J., Zhang, C., Tu, N., Wei, J., & Wan, Z. (2021). Thermal characteristics and thermal stress analysis of a superheated water/steam solar cavity receiver under non-uniform concentrated solar irradiation. Applied Thermal Engineering, 183. https://doi.org/10.1016/j.applthermaleng.2020.116234
Fang, L., Li, Y., Yang, X., & Yang, Z. (2020). Analyses of thermal performance of solar power tower station based on a supercritical CO2 brayton cycle. Journal of Energy Resources Technology, Transactions of the ASME, 142(3). https://doi.org/10.1115/1.4045083
Forsberg, C. W., Peterson, P. F., & Zhao, H. (2007). High-temperature liquid-fluoride-salt closed-brayton-cycle solar power towers. Journal of Solar Energy Engineering, Transactions of the ASME, 129(2), 141–146. https://doi.org/10.1115/1.2710245
García-Ferrero, J., Merchán, R. P., Santos, M. J., Medina, A., & Calvo-Hernández, A. (2022). Techno-economic analysis of Brayton concentrated solar power systems in the context of other power generation technologies. Proceedings of ECOS 2022 - 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 353–363.
Gobereit, B., Hofmann, D., Schwarzbözl, P., & Uhlig, R. (2016). High Temperature Solar Receiver with Ceramic Materials. In Ceramic for Energy Conversion, Storage, and Distribution Systems (Vol. 255). https://doi.org/10.1002/9781119234531.ch19
Guédez, R., Topel, M., Spelling, J., & Laumert, B. (2015). Enhancing the Profitability of Solar Tower Power Plants through Thermoeconomic Analysis Based on Multi-objective Optimization. Energy Procedia, 69, 1277–1286. https://doi.org/10.1016/j.egypro.2015.03.155
Gul, E., Baldinelli, G., Wang, J., Bartocci, P., & Shamim, T. (2025). Artificial intelligence based forecasting and optimization model for concentrated solar power system with thermal energy storage. Applied Energy, 382. https://doi.org/10.1016/j.apenergy.2024.125210
Heller, P. (2017). Introduction to CSP Systems and Performance. In The Performance of Concentrated Solar Power (CSP) Systems: Analysis, Measurement and Assessment (pp. 1–29). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100447-0.00001-8
Ho, C. K. (2017). Advances in central receivers for concentrating solar applications. Solar Energy, 152, 38–56. https://doi.org/10.1016/J.SOLENER.2017.03.048
Hojiev, T., Akhmadov, K., Halimov, A., & Akhatov, J. (2024). Advancements in Solar Thermochemical Reactors for Sustainable Hydrogen Production. https://doi.org/10.1051/e3sconf/2024508
Jacob, R., Belusko, M., Inés Fernández, A., Cabeza, L. F., Saman, W., & Bruno, F. (2016). Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants. Applied Energy, 180, 586–597. https://doi.org/10.1016/j.apenergy.2016.08.027
Jiang, R., Li, M.-J., Wang, W.-Q., Li, M.-J., & Ma, T. (2024). A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction. Energy, 292. https://doi.org/10.1016/j.energy.2024.130469
Khatti, S. S., Jeter, S., & Al-Ansary, H. (2021). Preliminary techno-economic optimization of 1.3 MWe particle heating receiver based CSP power tower plant for the mena region. Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021. https://doi.org/10.1115/ES2021-63926
Kolb, G. J., Diver, R. B., & Siegel, N. (2007). Central-Station Solar Hydrogen Power Plant. Journal of Solar Energy Engineering, 129(2), 179–183. https://doi.org/10.1115/1.2710246
Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D., Corvello, V., Piñeiro-Chousa, J., Liguori, E., Palacios-Marqués, D., Schiavone, F., Ferraris, A., Fernandes, C., & Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577–2595. https://doi.org/10.1007/S11846-022-00588-8/FIGURES/3
Kumar, A. (2024). Solar-integrated hydrogen production and utilization in India. Clean Energy: Technology, Advances, and Applications, 243–258. https://doi.org/10.1201/9781003521341-15
Lampropoulos, G., Larrucea, X., & Colomo-Palacios, R. (2024). Digital Twins in Critical Infrastructure. Information 2024, Vol. 15, Page 454, 15(8), 454. https://doi.org/10.3390/INFO15080454
Laporte-Azcué, M., González-Gómez, P. Á., de los Reyes Rodríguez-Sánchez, M., & Santana, D. (2021). Creep and fatigue damage assessment for molten-salt central receivers. Proceedings - ISES Solar World Congress 2021, 211–218. https://doi.org/10.18086/swc.2021.13.02
Lilliestam, J., Du, F., Gilmanova, A., Mehos, M., Wang, Z., & Thonig, R. (2023). Scaling Up CSP: How Long Will it Take? AIP Conference Proceedings, 2815(1). https://doi.org/10.1063/5.0148709
Lim, W. M., & Kumar, S. (2024). Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Global Business and Organizational Excellence, 43(2), 17–26. https://doi.org/10.1002/JOE.22229
Lim, W. M., Kumar, S., & Donthu, N. (2024). How to combine and clean bibliometric data and use bibliometric tools synergistically: Guidelines using metaverse research. Journal of Business Research, 182, 114760. https://doi.org/10.1016/J.JBUSRES.2024.114760
Liu, Q., Dai, Z., Wei, Y., Wang, D., & Xie, Y. (2025). Transformative Impacts of AI and Wireless Communication in CSP Heliostat Control Systems. Energies 2025, Vol. 18, Page 1069, 18(5), 1069. https://doi.org/10.3390/EN18051069
Liu, Z., Xie, J., Song, C., Yang, X., & Kalogirou, S. A. (2025). A review of hydrogen production through solar energy with various energy storage devices. International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2025.01.274
López Sanz, J., Cabello Nuñez, F., & Zaversky, F. (2019). Benchmarking analysis of a novel thermocline hybrid thermal energy storage system using steelmaking slag pebbles as packed-bed filler material for central receiver applications. Solar Energy, 188, 644–654. https://doi.org/10.1016/j.solener.2019.06.028
Lorenzin, N., & Abánades, A. (2016). A review on the application of liquid metals as heat transfer fluid in Concentrated Solar Power technologies. International Journal of Hydrogen Energy, 41(17), 6990–6995. https://doi.org/10.1016/j.ijhydene.2016.01.030
Ma, B., Shin, D., & Banerjee, D. (2021). One-step synthesis of molten salt nanofluid for thermal energy storage application – a comprehensive analysis on thermophysical property, corrosion behavior, and economic benefit. Journal of Energy Storage, 35. https://doi.org/10.1016/j.est.2021.102278
Majó, M., Svobodova-Sedlackova, A., Barcelona, P., Fernández, A. I., Calderón, A., & Barreneche, C. (2025). Long-Term Compatibility Testing of Solar Salt and Solid Particles at High Temperatures: A Thermal and Chemical Characterization. Energy Storage, 7(2). https://doi.org/10.1002/est2.70153
Maytorena, V. M., & Hinojosa, J. F. (2023). Computational analysis of passive strategies to reduce thermal stresses in vertical tubular solar receivers for safety direct steam generation. Renewable Energy, 204, 605–616. https://doi.org/10.1016/j.renene.2023.01.043
Miró, L., Oró, E., Boer, D., & Cabeza, L. F. (2015). Embodied energy in thermal energy storage (TES) systems for high temperature applications. Applied Energy, 137, 793–799. https://doi.org/10.1016/j.apenergy.2014.06.062
Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. https://doi.org/10.1016/J.JBUSRES.2022.04.042
Muñoz-Sánchez, B., Nieto-Maestre, J., Imbuluzqueta, G., Marañón, I., Iparraguirre-Torres, I., & García-Romero, A. (2017). A precise method to measure the specific heat of solar salt-based nanofluids. Journal of Thermal Analysis and Calorimetry, 129(2), 905–914. https://doi.org/10.1007/s10973-017-6272-x
Myers, P. D., & Goswami, D. Y. (2016). Thermal energy storage using chloride salts and their eutectics. Applied Thermal Engineering, 109, 889–900. https://doi.org/10.1016/J.APPLTHERMALENG.2016.07.046
Myers, P. D., Goswami, D. Y., Bhardwaj, A., & Stefanakos, E. (2015). Chloride salt systems for high temperature thermal energy storage: Properties and applications. ASME 2015 9th International Conference on Energy Sustainability, ES 2015, Collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, 1. https://doi.org/10.1115/ES2015-49460
Niedermeier, K., Marocco, L., Flesch, J., Mohan, G., Coventry, J., & Wetzel, T. (2018). Performance of molten sodium vs. molten salts in a packed bed thermal energy storage. Applied Thermal Engineering, 141, 368–377. https://doi.org/10.1016/j.applthermaleng.2018.05.080
Ondrey, G. (2009). Solar’s second coming. Chemical Engineering, 116(3), 18–21.
Paetzold, J., Cochard, S., Vassallo, A., & Fletcher, D. F. (2014). Wind engineering analysis of parabolic trough solar collectors: The effects of varying the trough depth. Journal of Wind Engineering and Industrial Aerodynamics, 135, 118–128. https://doi.org/10.1016/j.jweia.2014.10.017
Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies, 45(4), O1–O16. https://doi.org/10.1111/IJCS.12695
Pramanik, S. (2024). AI’s function in sustainable development’s renewable energy planning. In Next Generation Materials for Sustainable Engineering. https://doi.org/10.4018/979-8-3693-1306-0.ch016
Pranckutė, R. (2021). Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications, 9(1). https://doi.org/10.3390/PUBLICATIONS9010012
Pregger, T., Graf, D., Krewitt, W., Sattler, C., Roeb, M., & Möller, S. (2009). Prospects of solar thermal hydrogen production processes. International Journal of Hydrogen Energy, 34(10), 4256–4267. https://doi.org/10.1016/J.IJHYDENE.2009.03.025
Rafique, M. M., Saw, W., Lee, L., Ingenhoven, P., & Nathan, G. (2024). Performance assessment of a system to provide steady high temperature air via solar thermal suspension flow technology with storage and combustion back-up. Solar Energy, 268. https://doi.org/10.1016/j.solener.2023.112270
Reyes-Belmonte, M. A., Sebastián, A., Romero, M., & González-Aguilar, J. (2016). Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant. Energy, 112, 17–27. https://doi.org/10.1016/J.ENERGY.2016.06.013
Rodat, S., Abanades, S., Boujjat, H., & Chuayboon, S. (2020). On the path toward day and night continuous solar high temperature thermochemical processes: A review. Renewable and Sustainable Energy Reviews, 132. https://doi.org/10.1016/j.rser.2020.110061
Sánchez-González, A., & Santana, D. (2015). Solar flux distribution on central receivers: A projection method from analytic function. Renewable Energy, 74, 576–587. https://doi.org/10.1016/j.renene.2014.08.016
Scott, A. W., Adefarati, T., Bansal, R. C., & Naidoo, R. (2021). CONCENTRATED SOLAR POWER COMPARISON FOR POWER TOWER AND PARABOLIC TROUGH SYSTEMS. IET Conference Proceedings, 2021(5), 476–481. https://doi.org/10.1049/icp.2021.2322
Senthil, R., Gupta, M., & Rath, C. (2017). Parametric analysis of a concentrated solar receiver with Scheffler reflector. International Journal of Mechanical and Production Engineering Research and Development, 7(5), 261–268. https://doi.org/10.24247/ijmperdoct201727
Sievers, L. T. E., Pargmann, M., Maldonado Quinto, D., & Hoffschmidt, B. (2025). End-to-end sensitivity analysis of a hybrid heliostat calibration process involving artificial neural networks. Solar Energy, 287. https://doi.org/10.1016/j.solener.2024.113219
Silva-Pérez, M. A. (2017). Solar power towers using supercritical CO2 and supercritical steam cycles, and decoupled combined cycles. In Advances in Concentrating Solar Thermal Research and Technology. https://doi.org/10.1016/B978-0-08-100516-3.00017-4
Soltani, R., Mohammadzadeh Keleshtery, P., Vahdati, M., Khoshgoftarmanesh, M. H., Rosen, M. A., & Amidpour, M. (2014). Multi-objective optimization of a solar-hybrid cogeneration cycle: Application to CGAM problem. Energy Conversion and Management, 81, 60–71. https://doi.org/10.1016/j.enconman.2014.02.013
Stary, C., Elstermann, M., Fleischmann, A., & Schmidt, W. (2022). Behavior-Centered Digital-Twin Design for Dynamic Cyber-Physical System Development. Complex Systems Informatics and Modeling Quarterly, 2022(30), 31–52. https://doi.org/10.7250/CSIMQ.2022-30.02
Telsnig, T., Weinrebe, G., Finkbeiner, J., & Eltrop, L. (2017). Life cycle assessment of a future central receiver solar power plant and autonomous operated heliostat concepts. Solar Energy, 157, 187–200. https://doi.org/10.1016/j.solener.2017.08.018
Tesio, U., Guelpa, E., Ortiz, C., Chacartegui, R., & Verda, V. (2019). Optimized synthesis/design of the carbonator side for direct integration of thermochemical energy storage in small size Concentrated Solar Power. Energy Conversion and Management: X, 4. https://doi.org/10.1016/j.ecmx.2019.100025
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/S11192-009-0146-3/FIGURES/7
Wagner, M. J. M. J., & Wendelin, T. (2018). SolarPILOT: A power tower solar field layout and characterization tool. Solar Energy, 171(August 2016), 185–196. https://doi.org/10.1016/j.solener.2018.06.063
Wang, K., & He, Y. L. (2017). Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling. Energy Conversion and Management, 135, 336–350. https://doi.org/10.1016/J.ENCONMAN.2016.12.085
Wang, K., He, Y. L., & Zhu, H. H. (2017). Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts. Applied Energy, 195, 819–836. https://doi.org/10.1016/J.APENERGY.2017.03.099
Wang, K., Li, M. J., Guo, J. Q., Li, P., & Liu, Z. Bin. (2018). A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants. Applied Energy, 212, 109–121. https://doi.org/10.1016/J.APENERGY.2017.12.031
Ward, P. A., Corgnale, C., Teprovich, J. A., Motyka, T., Hardy, B., Sheppard, D., Buckley, C., & Zidan, R. (2016). Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems. Applied Physics A: Materials Science and Processing, 122(4). https://doi.org/10.1007/s00339-016-9909-x
Webby, B. (2013). Sensitivity analysis for concentrating solar power technologies. Proceedings - 20th International Congress on Modelling and Simulation, MODSIM 2013, 1496–1501.
Wei, D., Zhu, L., Ling, X., & Jiang, F. (2024). Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage | 高温储热用 MgCl2-NaCl-KCl 熔盐的研究进展. Energy Storage Science and Technology, 13(12), 4421–4435. https://doi.org/10.19799/j.cnki.2095-4239.2024.0855
Wei, J., Wan, Z., & Tu, N. (2015). Progress in water/steam cavity receivers in tower-type solar power plants | 塔式太阳能热发电水工质腔式吸热器研究进展. Kexue Tongbao/Chinese Science Bulletin, 60(7), 603–612. https://doi.org/10.1360/N972014-01050
Xiao, G., Nie, J., Xu, H., Zhang, C., & Zhu, P. (2022). Performance analysis of a solar power tower plant integrated with trough collectors. Applied Thermal Engineering, 214. https://doi.org/10.1016/j.applthermaleng.2022.118853
Xu, X., Vignarooban, K., Xu, B., Hsu, K., & Kannan, A. M. (2016). Prospects and problems of concentrating solar power technologies for power generation in the desert regions. Renewable and Sustainable Energy Reviews, 53, 1106–1131. https://doi.org/10.1016/j.rser.2015.09.015
Yakufu, A., Yang, Z., Xu, Y., & Wang, Q. (2023). Research on Thermal-Hydraulic Characteristics of Liquid Sodium Versus Molten Salt as A Fluid in Heat Exchanger. 2023 7th International Conference on Power and Energy Engineering, ICPEE 2023, 434–438. https://doi.org/10.1109/ICPEE60001.2023.10453870
Yang, J., Yang, Z., & Duan, Y. (2022). A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle. Energy, 246. https://doi.org/10.1016/j.energy.2022.123348
Zhang, J., Hu, Z., Zheng, J., Xiao, Y., Song, J., Li, X., Cheng, C., & Zhang, Z. (2024). Photothermal-assisted solar hydrogen production: A review. Energy Conversion and Management, 318, 118901. https://doi.org/10.1016/J.ENCONMAN.2024.118901
Zyoud, S. H., Waring, W. S., Al-Jabi, S. W., & Sweileh, W. M. (2017). Global cocaine intoxication research trends during 1975-2015: A bibliometric analysis of Web of Science publications. Substance Abuse: Treatment, Prevention, and Policy, 12(1), 1–15. https://doi.org/10.1186/S13011-017-0090-9
Downloads
Submitted
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zeshan Aslam, Syed Ihtsham Ul-Haq Gilani, Taib Iskandar Mohamad, Kehinde Temitope Alao

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Emerging Science and Engineering published under the terms of a Creative Commons Attribution 4.0 International License / CC BY 4.0 This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivative works of this material for any purpose, including commercial purposes, so long as they include credit to the Authors of the original work.











